
Configuring Geant4 applications
 with Python (ATLAS approach)

Manuel Gallas, Andrea Dell’Acqua
 LCG Applications Area meeting
 13 July 2005, CERN

Manuel Gallas
CERN PH-SFT

Outline:

• Some questions to begin with

• Global picture

• What do we look for?

• The result product

• Some use-cases (examples)

• Conclusions

2

Manuel Gallas
CERN PH-SFT

Some questions to begin with:

• What? be able to configure different Geant4 Applications from the Python prompt and provide an
interactive approach. “Configure” in a sense in which the end-user can go from very top configuration
(simulation options and flags) to the detail and be able to build and customize the simulation [we expect
different use-cases].

• Why?

✦ The ATLAS Athena framework provides a Python prompt and the configuration of the jobs (generation,
simulation, digitization, reconstruction, physics analysis ...) is done through Python scripts
(“jobOptions”). So it makes sense to provide a way to not only launch but also configure the simulation
jobs.

✦ The standard “G4 macros” are not well integrated in this Python infrastructure:

✦ they are txt files that we do not want to parse, copy here or there or build on the fly.

✦ The number of these macro files has an uncontrolled growing tendency.

✦ At the end the interactivity becomes a heavy editing activity on these macro files.

• How? This is the topic of the talk and covers the work done by Andrea Dell’Acqua and myself during
the last months to solve the equation : Geant4+PyLCGDict+Python+ATLAS specific = PyG4AtlasApps a
particular (and not for this more easy!) case of the general case: Geant4+PyLCGDict+Python=PyG4Apps

• Where? This approach is working for the different ATLAS Geant4 simulation applications (2004
Combined Test Beam in GRID production since May 2005 and ~ 5 Million events, ATLAS full simulations for
the commissioning and cosmic studies by Andrea Di Simone)

3

Manuel Gallas
CERN PH-SFT

Atlas 10.0.0
release

(March 2005)

Py
th

on
iz
in
g

G4
A
tl
as

DC-2 production
Rome production

CTB-preproduction

Atlas.mac
 atlas_envelopes.mac

 InnerDetectorGeometry.mac
 pixelgeometry.mac
 sctgeometry.mac
 trtgeometry.mac

 LarCal.mac
 TileCal.mac

 MuonSystem.mac

jobOptions.py (recursive includes)

• The number of macro files increase rapidly as soon as you need to gain flexibility
 (CTB has ~50 macro files only for the combined layout) --> Structure unmanageable.

• The only flexibility that can be ported to the jobOptions is the selection
of one or another macro file or at the limit the on-fly macro file creation. --> Dangerous

• A quite large number of XML files needed at the running time.
•The interactive configuration of the simulation job and navigation in the Athena

prompt is complicated (ex: Which are the cuts am I applying?).

Only ge
ometry h

ere!!

Framework for Atlas Detector Simulation

G4AtlasApps: Application Environment
 (Python Package)?

Global picture: ATLAS simulation road map (I = migration)

4

Manuel Gallas
CERN PH-SFT

Global picture: ATLAS simulation road map (II = new life)

- Unique entry point for all the simulations apps
(sharing, control, easy for the end user)

- And is still possible to inspect and customize the
simulations from these top jobOptions

FADS
 Facade

ATLAS/Athena
specific

Application environment

Geant4

SEAL: the PyLCGDict mechanism
allows for straightforward exporting

of C++ classes into Python

5

jobOptionG4Atlas_Sim.py
jobOptionG4Cosmic.py

jobOptionG4InDetcosmic.py
jobOptionsG4CTB_Sim.py

...........
test_ATLAS-evgenmu_pt5_eta60.py
test_ATLAS-singleE_ParLArBarrel.py

...........

Python modules in the $PHYTONPATH
can be accessed from everywhere

Documentation almost for free

Manuel Gallas
CERN PH-SFT

 atlas_idet.py

Global picture: (III = general view)

Geant4

C++ layer

Some of the C++
classes public

interface exported
to Python Python layer Job configuration

Simulation Apps

Digitization

Reconstruction

Physics Analysis

PyLCGDict

PyG4Atlas: Python generic
classes for simulation: Engine,
DetFacility, SensitiveDet

Athena

Detector
specific

FADS

Atlas
G4Engine

6

 atlas_calo.py

 atlas_muon.py

G4AtlasApps

End-User Simulation infrastructure developer

Access to the G4Engine in
Python and play with Detector
flags and Simulation Options

Configure ATLAS simulation
Applications Building blocks

Manuel Gallas
CERN PH-SFT

 Configuration modules

Global picture: (IV = generic view)

Geant4

C++ layer

Some of the C++
classes public

interface exported
to Python Python layer Job configuration

Simulation Apps

PyLCGDict

Framework
exp

Detector
specific

Simulation
Frame
Work

G4Engine

7

Simulation infrastructure developer End-User

Access to the G4Engine in
Python and play with Detector
flags and Simulation Options

Configure simulation
Applications Building blocks

PyG4: Python generic clases
for simulation: Engine,
DetFacility, SensitiveDet

Manuel Gallas
CERN PH-SFT

1. Provide user-functionality for the simulation jobs and of course
make happy all users (difficult!!), but let us see what they may
need:
• User at Entry-Level
 (entry-point JobOption.py and use of flags)

• Switch on/off detectors (DetFlags) and build
 the simulation automatically in accordance.

•
 Run the simulation with run conditions.
•
 Run different geometries for the sub-detectors.
•
 Access to different physics lists/regions/cuts.
•
 Of course select particle/energy/magnetic field

•
 User that wants to configure/customize the application
 (entry-point JobOption.py)

•
 Possibility to modify the existing simulation from
 the jobOption.py (no needed to touch G4AtlasApps
 package, only access to the modules defined there).
•
 To do what?:
 - change the position of the detectors, (particular
 studies, misalignments…)
 - add materials, scintillators, define new regions..

•
 Advanced user which implements the simulation entities
 (simulation infrastructure)

. Navigate the complete set of simulation objects
 (detector facilities, sensitive detectors, cuts,
 positions, envelopes hierarchy)
. Use and reuse as much as possible python objects
 already defined and speed up the setup of a new
 simulation

. Production user: (production team)
•
 Flexibility to run what the Physics Community requires

but avoid complicated scripts to customize the
simulation on-fly.

•
 Hits/Digits jobs (same running conditions)

2. Minimize the spread of configuration files/
 modules.

 - we really want to forget the “mac” files and
 their uncontrolled growing.

3. Full Atlas/CTB/…. and other simulation must
 be run in the same way and in the same
 place, sharing as much as possible.

 - users may need to run both simulations
(or other configurations) and the change must
 be in selecting the right jobOption.py not the
 package.

4. Flags mechanism under control:
 - users do not need to be exposed to more
 flags than needed and should know where
 to find them (documentation).
 - but the flags mechanism has to be flexible
 enough to define new configurations (actual
 full Atlas and CTB simulation have common and
 different flags.
5. A some point we maybe need to be able
 to run getting the run conditions from a DB.

What do we look for?

8

Advan
ced u

ser

Entry
 Leve

l use
r

Simu Inf
rastr

uctur
e

deve
loper

Produ
ction

 user

Manuel Gallas
CERN PH-SFT

The result product

PyG4Atlas defines the python classes for: DetectorFacilities, Sensitive Detectors, Mctruth
strategies, PhysicsRegions and Cuts, PhysicsLists,UserActions…

PyG4Atlas.G4AtlasEngine puts everything together (it should be possible to access any python object
involved) and takes care of the different phases of initialization, log-service, etc...

PyG4Atlas always does a selective import of python modules, lib, dictionaries based on the user
requirements.

Geant4+PyLCGDict+Python+ATLAS specific = PyG4Atlas

PyG4Atlas is a Python interface to interact from the Athena Python
prompt with FADS (Framework for the ATLAS Detector Simulation)
and G4 .

G4AtlasApps is an application environment package that provides PyG4Atlas
interface and a set of pre-configured ATLAS simulation cases:

- full ATLAS, commissioning
- full ATLAS cosmic studies
- Inner Detector cosmic studies,
- CTB test beam (different layouts)
that the user can customize using SimFlags (at first order) or by accessing
the Python simulation objects.

Manuel Gallas
CERN PH-SFT

The result product

LXR browsing G4AtlasApps/doc

Manuel Gallas
CERN PH-SFT

Some use cases(1): Entry level user

Just an example for a ATLAS CTB simulation user:

• Uses detector flags (detectors on/off).

• Uses Simulation flags (PersistencyHit,
 Kinematics mode,
• Uses specific CTB simulation flags:
 SimFlags.SimLayout.setValue(cth8_combined

 cth8_photon
 ctb8_calibration
 ctb8_lar-material)

 SimFlags.Eta.setValue(0.2)
 SimFlags.IdetOracleTag.setValue(‘InnerDetector-CTB-05’)

• Uses run conditions and wants run number 242
(the same conditions must be passed to digitization job)

11

ATLAS CTB test beam

Configuration of the simulation job

Manuel Gallas
CERN PH-SFT

Some use cases(1): Entry level user

ATLAS full simulation

ATLAS full simulation cosmic rays

For the user the three cases we have described here
behaves in the same way. He can run all of them in the same
test directory and the way in which the jobs are configured
is the same.

Configuration of the simulation job

Manuel Gallas
CERN PH-SFT

Some use cases(1): Entry Level user

ATLAS CTB test beam

ATLAS full simulation

ATLAS full simulation cosmic rays

For the user the three cases we have described here behaves in the same way.
But if the user does a little “inspection” of what is in the simulation, he can
understand what is the simulation he is dealing with

Inspection

Manuel Gallas
CERN PH-SFT

Some use cases(2): Advanced User
“Real case”: a ATLAS CTB test beam user is studying the longitudinal shower profiles in the LAr and he thinks that maybe
some material is missing in the “official” simulation. He wants to prove it and for this he wants to add extra material in a
far upstream position and also in front of the inner detector.
Here it is how he can customize the simulation (adding the following lines to the standard jobOption)

Manuel Gallas
CERN PH-SFT

Conclusions:

- PyG4Atlas and G4AtlasApps have proved to be a “flexible”, “quick”
and “easy” way to configure simulation applications.

- Different types of users can access, inspect and modify the pre-
configured simulation (provided by the G4AtlasApps package) in the
same way. Python offers interactivity, and helps to keep job-
configuration under control.

- PyG4Atlas was tested in GRID production for the CTB (ATLAS
combined test beam) in which several layouts, many configurations were
handled with minimal effort by the production team.

- Geant4+PyLCGDict+Python=PyG4Apps is another possible equation

- PyLCGDict is a key point in all the process and not all the classes
need to be exported

Manuel Gallas
CERN PH-SFT

Backup slides

Manuel Gallas
CERN PH-SFT

Backup slides: Flag documentation (I)

17

LXR browsing G4AtlasApps/doc

Flags and options for simulation (Simflags) are kept updated and full
documented in the LXR server.

Manuel Gallas
CERN PH-SFT

Backup slides: Flag documentation (II)

18

Flags and options for simulation (Simflags) are written in the log
files and can be accessed in interactive mode,
(help, meaning, possible values etc)

 athena> help(SimFlags.IdetOracleTag)

Ask for help!!

