
Interactive Analysis in ATLAS
(thoughts on Analysis Model)

Amir Farbin
CERN

Overview
 Definitions/Disclaimers
 Motivation: Concrete example of issues we are trying to

address: a BaBar analysis
 Analysis in ATLAS Today:

Event Data Model
Framework (Athena)
 Interactive Athena (w/ some examples)
Analysis Object Data: features and problems
Present Analysis Model

 Some Recent Developments (EventViews/UserData)
 A vision of the Analysis Model with

EventViews/UserData as basic elements and Interactive
Analysis as a goal.

Definitions/Disclaimers
 Some of what I call “interactive” you wouldn’t do interactively. I really

mean python based analysis in analogy to Cint/ROOT analysis. In
other words interpreted code + prompt.

 Interactive Athena (framework) means interactive access to Athena
data, algorithms, services, etc… This is available now.

 Interactive Analysis adds basic analysis concepts to interactive Athena
to help w/ analysis. We are working towards this…

 There is no official ATLAS Analysis Model, yet… some of us have
some ideas. But not everyone is convinced so we are listening and
accomodating requirements.

 Fundamental questions:
 Is Interactive Athena just a “code proto-typing” environment or can

“online validation” high level analysis be done on Athena prompt?
 Is “Analysis Object Data (AOD) + Framework + Interactive Analysis +

Distributed analysis” better than ntuplizing all data (like experiments
before us)?

A BaBar Analysis (2001-2004)
To put you in the mind frame of the analyzer (ie the consumer of the analysis
model), here’s an example of a “modern” analysis:

• The measurement of “sin 2α” in B->ππ is (was?) a BaBar “flag-ship” analysis.
It was very complicated (and technically challenging): rare decay, large bkg,
PID (B->πK), flavor tag, tag vertex, ~100K event fit extracting 119 parameters.

• Often results were targeted for both summer and winter conferences every
year. This was fueled by competition w/ other experiments.

• Reprocessed (reconstructed w/ updated algorithms/alignments) data
available in bulk ~ 2-3 months before conference. Last data intended for
conference ~ 1 month. Analyzers must understand differences due to
reprocessing.

• Very rigorous 8 week internal review process… lots of required docs.

• Analysis was performed blind (to avoid bias): don’t look at the data until
permitted… don’t look at the fit results until permitted.

• Typically the 2-3 analyzers spent 2-3 months preparing w/ MC, 2 months
performing the analysis, and 1 month recovering.

• LHC analysis style/issues will be somewhat different and hopefully less
stressful… nonetheless it will be demanding.

• My point: As consumers of Analysis Model, analyzers struggle w/ technical
details everyday. Better model, better physics.

•Job submission (sh + perl scripts)
•Query DB for event collections
•Properly configure/run framework jobs
•Keep batch queues populated w/ jobs
•Resubmit failed jobs (can’t miss 1 event)
•Perform book keeping
•Issues: unreliable services/resources,
slow access to data, competition w/ in
batch queues, disk space, …
•In best case: 2-3 weeks to run over all
data.
•At least 1 FTE.

•Analysis in Framework (C++ & tcl)
•Complicated algorithms: Particle ID,
combinatorics, vertexing, kinematic
fitting, flavor tagging, observable
calculation
•Well designed analysis tools meant that
code rarely had to be modified…
•But slow access to data meant that
analyzers Ntuplized almost everything
•Issues: BaBar could not store numerous
ntuplized copies of data. Hard to repeat
this step.

•Ntuple analysis (PAW or ROOT)
•Ntuple format dependent analysis
framework.
•1st level Interactive analysis
•Make final selections, plots, etc…
•Export “flat files” of subset of observables.
•Issues: different groups had different suites
of analysis “macros”. Could not go back to
previous step of analysis (change
algorithm/parameter to study effect).

•Maximum likelihood fit (LISP+PAW or RooFit)
•High-level interactive analysis environment.
•Build model of observables based on
detector and physics ideas and try to extract
parameters/measurements.
•Produce toy experiments (in batch queues)
•Fit data, control samples, Toy MCs
•Make likelihood projection plots, tables
•Issues: No connection to previous steps.

A BaBar Analysis (technical steps)
“N

tu
pl

e
P

ro
du

ct
io

n”

“In
te

ra
ct

iv
e

A
na

ly
si

s”

There are lots of issues… which ATLAS
addresses in different ways. But note:

• Every step is in a completely different
environment.

• Some reasonable questions could not be
answered in simple ways.

Interactive Framework
 General Idea: All of the steps shown in previous slide

(and more) should be controlled/monitored from one
environment.
 And more: generation, simulation, digitization,

reconstruction, analysis, event display, database
interactions, online/offline monitoring, GRID services,…

 For the most part, this means that everything should use
the same framework.

 But it also means that components which fall outside of
framework (fitters, job submission, …) are pulled into a
common environment as the framework.

 Finally, since interactivity is essential to analysis, this
environment must provide a “prompt” and simple
interfaces for accessing various components.

Goal: An Ideal Analysis Environment
 Physicists should be able to easily ask a “physics”

question from the software.
Simple Ex: Compare the PT distribution of leading jet for

events w/ > 200 GeV of missing-ET between Data, MC SUSY
(signal), MC QCD (bkg), and MC top (bkg) samples…
properly normalized.

Complicated Ex: I am updating my Higgs mass
measurement. What part of the change in my fitted Higgs
mass is due to new algorithms, new calibrations, new data,
new analysis?

 We’re not talking natural language processing and AI…
 But such question should easily translate into 1 to O(10)

statements… which in principle should be entered at a
prompt.

 Next, I’ll tell you about analysis in ATLAS today…
 Then, I’ll present some ideas of how try to get from

today to the ideal.

The ATLAS Data
 ATLAS will record ~3 PB of

RAW data a year.
 Physics requirements and

computing realities are
balanced to determine data
distribution and detail available
for analysis.

 Identified data types (Event
Data Model):
 RAW: 1.6 MB/event.
 RDO: Raw Data Object.

Object representation of
RAW. Persistified for
simulation, transient only for
data.

 ESD: Event Summary Data.
Collection of output of the
various reco algs. Includes
hits/cells. Intended for
calibration. Limited access
(tier 1). 500 KB/event.

 AOD: Analysis Summary Data.
Analysis specific objects.
Derived/Slimmed from ESD. Available
to all (tier 2). 100 KB/event.
 TAG: Event summary data for fast
selection. 1 KB/event.
 DPD: Derived Physics Data. Ie
ntuples, histograms, UserData.

Athena Framework
 Enhanced version of Gaudi.
 Relevant Features:

 Abstract Interfaces for Algorithms, Tools, Transient Data
Stores, Services, Selectors, Converters, Properties, Utilities.

 “athena” is a python script which loads the application
manager using py bindings to core Athena abstractions.

 Everything is loaded dynamically.
 Data and algorithms are separated as design principle.
 Transient data store: StoreGate. Persistified through POOL.

Back-navigation allows referencing objects in different files
(eg AOD -> ESD).

 Allows access to python prompt.

Typical (“non-interactive”) Athena Job

 Algorithms, tools, etc written in C++, configured in py.
 Any athena job (eg: generation, simulation, digitization,

reco, analysis) is defined by some python jobOption file
which says:
 Load these libraries
Read in this data
Run these algorithms in this order
Configure each algorithm in this way
Output this data

 Algorithm execution order, configuration,
input/output done at run-time.

Interactive Athena

 So far, we have a limited set of tools which augment the
athena environment to make make basic interactive
analysis possible
Reflection dictionaries generated for data persistified in

POOL. So we have python bindings to data through
Pylcgdict. (Move to new py bindings when available)

PyRoot for histogramming/ntupling
 “PyGate” interface to retrieve objects from StoreGate
PyPoolSeek for random access of events
PyKernel for interface to AIDA histograms.
PyParticleTools, PyTriggerTools, PyAnalysisCore for

convenient access to AOD, Trigger, and Truth objects
Algorithms can be written purely in python.

Interactive Athena Examples

We can do basic stuff:
> athena -i Interactive_topO.py
athena> theApp.initialize()
athena> theApp.nextEvent()
athena> econ = PyParticleTools.getElectrons("ElectronCollection")
athena> len(econ)
4
athena> e = econ[0]
athena> dir(e)
['Electron', 'Navigable', 'P4EEtaPhiM', …]
athena> e.pt()
1978.4287625828167
athena> tp = e.track() # Accessing track object
athena> dir(tp)
['=', 'NavigableTerminalNode', 'P4PxPyPzE', …]
athena> tp.pt()
2216.3881545625945
athena> eg = e.eg() # Navigating Back from AOD -> ESD
athena> eg.e()
11949.0

Interactive Athena Examples
athena> plot("ElectronContainer#ElectronCollection","$x.pt()",nEvent=5)

athena> include ("PyAnalysisExamples/PyPoolBrowser.py")

•So we can now interactively examine the contents of our POOL files!

•There is an effort to interactively QA output of generation, simulation,
digitization, reco, …

import ROOT
import math
#
theApp.initialize()

h16 = ROOT.TH1F (“h16”, ‘R G4 Brem photons’,100, 0., 120.)
for i in range(5000):
 theApp.nextEvent()
 scon=PyParticleTools.getTruthParticles("SpclMC")

 for p in scon:
 t=p.getGenParticle()
 tver=t.production_vertex()
 if tver :
 R=math.pow(tver.point3d().y(),2) +math.pow(tver.point3d().x(),2)
 R=math.sqrt(R)/10.

 if p.pdgId()==22 and math.fabs(t.barcode()) > 10000.:
 if math.fabs(p.eta())< 1.0:
 h16.Fill(R)
#

Python code

Z → ee events (AOD)

R (leading Brem photon) cm

Events with
[pT (track) - pT (true)] /pT (true)
 < -0.3

all events

Interactive
Athena
Examples

Note: this can be
done in an
algorithm also…

Experience w/ Interactive Athena
• Several non-experts have tried interactive athena.

• One user (S. Gadomski) has compared execution time of C++ and
python analysis code.

• User impressions:

•Though interpreted python is slower… difference negligible
compared to AOD object retrieval time.

•Python analysis is “simple” and “powerful”

• Interactive Athena today is good for analysis end point histogramming
and fast algorithm prototyping.

Analysis Model (Today)
 We have the basic ingredients for analysis:

 Framework where physicists can write analysis algorithms/tools,
make ntuples/histograms, etc…

 EDM: AOD and ESD w/ back-navigation
 Particle objects in AOD (more on this next slide)
 Some analysis tools for combinatorics, neutrino reco, …

 We would like physicists to perform as much of their analysis as
possible in Athena, rather than dumping ntuplize copies of the
AOD. Besides being able to do better analyses in Athena, we
cannot afford to store the ntuples.

 The AOD was very successfully used by almost all analysis groups
to present results at our Rome Physics Workshop last month.

 The general trend was to write all analysis code into one C++
algorithm which dumped histograms or an ntuple. Many analyses
could benefit from some more modularity.

 Some analysis packages created by groups, but they were either
too complicated or failed to benefit from some basic features of our
framework.

 There are some problems which must be addressed before we
have the “ideal” interactive analysis environment…

A bit about the AOD
 AOD mostly stores collections of IParticles

 Have 4-momentum representation, origin, PDG ID
 Have constituents (reco obj in ESD or other particles)
 Different inherited classes for Electron, Photon, Muon,

TauJet, ParticleJet, BJet, Composite, Neutrino each
with customized content.

 AOD particles are built by copying information
from and linking to reco’ed obj in ESD.

 AOD versions of tracks and calo clusters
(coming soon) are also kept.

 Possible operations on AOD: Now: Vertexing;
Soon: B-Tagging, Missing ET, Jet Clustering
 Important principle: Apply complicated algorithms

which analyzers might need to tweak on AOD.

Present Problems w/ AOD Analyses
 It’s too slow! 50k events in 1 hour.

 An effort has begun to optimize. Factor 10 is not inconceivable.
 Distributed analysis might help.
 But if AOD is the input to an interactive analysis, this needs to be

at ntuple speed (1000 X faster).
 Difficult to read data, create objects, at ntuple speeds.

 Overlaps between particles are not removed:
 Ex: Since the tau, electron, and jet reco algs all start from calo

cells, the same object in the detector will be reco’ed as a tau,
electron, and jet.

 This is actually considered a feature, since different analyses will
have different requirements.

 But every analysis starts w/ removing overlaps.
 Once you write ntuples, you loose your connection to AOD.
 Different AOD particle types are stored in different containers which

don’t inherit from each other.
 Difficult to write generalized algorithms for modular analyses
 Ex: Cannot write an algorithm which find all combinations of N

particles consistent w/ a certain mass.
 Symlink solves this problem, but causes other.

Problems w/ Current Analysis Model
(restated)
 Can’t access the AOD fast enough for

interactive plotting.
Must store ntuples to store observables.
 No connection from ntuple to AOD.
 AOD particles overlap
Must remove overlaps and keep track of results.
 Difficult to write generalized tools which work for

any particle type.

A solution: EventViews
 EventView (EV) is a collection of reconstructed objects that are coherent,

mutually exclusive, exhaustive, i.e. the particles that don’t overlap.
 Keep true to Athena principles, we have separated EV EDM and EV building.

Building EV can be very complicated, so we allow users to decide how to fill
their EV.

 EV Features (so far):
 Keeps links to AOD particles (FinalStateObjects). EVs back-navigate to AOD.

Keeps links to particles created during analysis (InferredObjects).
Solves overlap problem.
 Have a parent EV… users can build EV trees.
 Serves as proxy to StoreGate (eases retrieval, looping, and symlink).
Solves generalized algorithm problem.
 Store for UserData: ability to dynamically add templated user-defined data which fast

accessible (ntuple replacement). Simple interface:
“EV->setUserData<double>(“Blah”,5.)”

Addresses fast access/ntuple->AOD connection problems.
 EV is persistified in POOL.
 UserData can be persistified into POOL, Tag, and/or AIDA (ROOT ntuple).
 We have one implementation of EV builder…

 Upcoming EV Features
 Parallel/child EV creation
 Particle labeling

Hierarchical EventView Building.
defaultEV.EventViewTools=[
 "EVElectronInserter",
 "EVPhotonInserter",
 "EVMuonInserter",
 "EVTauJetInserter",
 "EVParticleJetInserter",
 "EVMissingEtUserData"
]

alternateEV.EventViewTools=[
 "EVParticleJetInserter",
 "EVTauJetInserter",
 "EVElectronInserter",
 "EVPhotonInserter",
 "EVMuonInserter",
 "EVMissingEtUserData"
]

toolSvc.EVElectronInserter.ContainerKey="ElectronCollection"
toolSvc.EVElectronInserter.etCut=10*GeV
toolSvc.EVElectronInserter.deltaRCut=.1

toolSvc.EVPhotonInserter.ContainerKey="PhotonCollection"
toolSvc.EVPhotonInserter.etCut=10*GeV

toolSvc.EVMuonInserter.ContainerKey="MuonCollection"
toolSvc.EVMuonInserter.etCut=10*GeV

toolSvc.EVTauJetInserter.ContainerKey="TauJetCollection"
toolSvc.EVTauJetInserter.etCut=10*GeV
toolSvc.EVTauJetInserter.likelihoodCut=4.

toolSvc.EVParticleJetInserter.ContainerKey="ConeTowerParticleJets"
toolSvc.EVParticleJetInserter.etCut=10*GeV

One implementation of EV Building:

EventView Builder Example

EventView for Analysis Bookkeeping
 Building EV is likely the first step to any analysis.
 Users build hierarchy of EV as they “refine” their

view:
 Create Parallel EV when deferring decisions. Ex: I

can’t decide this is a tau or a jet, so I consider both.
 Create Child EV to reflect a different combinatoric

choice
 UserData

Association of UserData w/ EV is natural, since in
analyses observables are usually only valid w/ in a
view.

UserData keep the hierarchical structure of EV. If I
don’t have a variable, maybe my parent does.

UserData provides a mechanism of communicating
information between algorithms.

EventView as Basic Analysis Object
 Example Analysis Flow (within an Event)

1. Build fundamental and/or parallel EVs
2. Calculate Event variables (N Jets > 100 GeV, event shape, etc …)

for each EV, attach as UserData
3. 1st Selection on EV using UserData
4. Perform Combinatorics to reco W’s, Z’s, H, etc … until you build

specific signature.
5. Calculate/store observables (masses, angles, kinematics, detector

info, etc…) into UserData.
6. Make final selections, optimize cuts, perform studies, make plots

using UserData.
7. Navigate back EV -> AOD -> ESD for interesting events.

 Note that User may write out EV at any point and continue
the analysis in another session. In fact, 1 and 2 could be
performed by the analysis group (Ex: SUSY EventView).

Developing A New Analysis
 We have plans of standard interfaces and generalized

implementations of tools for basic EV operations: build views,
selections, combinatorics, observable calculation, …

 We imagine 3 different possible implementations of the same
tools based on same abstract interface:

1. Pure C++, configurable in py through jobOptions
2. Pure python… jO configurable
3. C++ w/ python call backs… jO configurable

 Ex: Tool which performs combinations in C++, but interprets some py
(passed as jO) to determine whether or not to keep the candidate.

 Analyses will be comprised of a combination of code written
in 1, 2, and 3.

 Ideally, generalized tools are either type 1 and 3 in order to
be fast… and when the generalized tool does not meet a
users specific needs, he/she will only need to write type 2.

 This is the “Analysis in Framework” step in BaBar Example.

Developing Analysis in the
Framework
 General procedure:

Use standard tools when possible.
 If tools doesn’t exist, write your own.
Put them together in right order. Properly configure them.

 Some basic analysis tools users will use/develop in
course of analysis:
EV Builders: If necessary specialized EV particle adder or

EV builder.
Composite particle builders
Observable Calculators (UserData): Cache AOD/ESD info,

masses, kinematics, Neural Network, …
Selections: Based on UserData?

 With standard interfaces, the physics community will
hopefully develop libraries which can be shared.

Performing Analysis On UserData
 Persistency technology not decided (ask me for details, if you like)

 POOL is too slow.
 Tag (AttributeList) cannot save arrays.
 Ntuples do not keep connection to framework.
We have a plan for how to proceed.

 UserData is really an ntuple, which may be read directly in ROOT… we
would like to support the “laptop ROOT analysis on plane” scenario.

 Typical ROOT based analysis start w/ a framework for keeping track of
different chains of ntuples, looping (TTree::MakeClass()), making plots, ...

 We plan to provide a python analysis environment which
 Keeps track of UserData datasets in a matter consistent w/ EventSelector.
 Provides “EventLoop” and “Algorithm” similar to Athena Framework.
 Provides convenient interfaces. Imagine:

Samples(“signal”,”bkg”).Draw(“JetpT[0]”,”MET>200”)
 In addition, users should be able to back-navigate, entering the standard

Athena event loop while examining UserData. They should be able to
recalculate UserData.

 This is the replacement for “Ntuple Analysis Framework” in BaBar
Example.

Basic Vision of Analysis Model
 Recalling the steps in BaBar Example

 Job Submission, data management, etc: Python is a scripting
language. ATLAS is providing services for this (Distributed
Analysis?). Much of this is python based already.

Framework Analysis: EV can be basic object passed between
modular parts of the analysis. Users will mix standard tools
with their own python and C++. They can develop/configure
their analysis and write code “interactively” in python.

 “Ntuple” Analysis: UserData will serve as ntuple with links back
to EV->AOD->ESD. A lightweight python framework will mimic
EventLoop and Algorithms, provide convenient tools, and allow
easy back-navigation to Framework Analysis and recalculation
of UserData. User may also perform ROOT based analyses.

High Level Analysis: Access to such packages (such as fitters)
provided through python bindings.

 So everything can be done in a single python session.
 Ideally, users can write py scripts which mix these steps

to answer complicated questions.

Final Words
 Most fundamental elements for Analysis Model is available.
 Much of the other elements are either already available, or soon will

be.
 Key element to model: We imagine most interactions w/ software

will occur in python… “Interactive Analysis”
 No matter how smart we think we are, we cannot think of every

conceivable problem/requirement.
 “We” here are actually users. We are developing this so we can

perform our own analyses…
 Therefore, we plan on a process of

 Delivering a certain set of features to other users
 Providing instructive examples of real analyses (our own analyses)
 Providing documentation and tutorials which teach how to perform

analysis w/ in the model.
 Identify individuals w/ in each analysis group who will use, test, and

comment. Regular meetings to discuss issues/ideas from User
community.

 Iterate…

What needs to be done

 Finish EventViews
 Figure out UserData persistency
 Put clusters in AOD, build jets in AOD
 Develop overlap tools
 Bring in higher level analysis tools into python.

Ex: RooFit (easy, since it’s in ROOT).
 Make EventSelector keep track of multiple

samples.
 Create the UserData analysis environment
 Give lots of tutorials.

