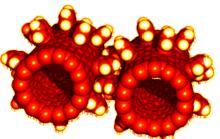
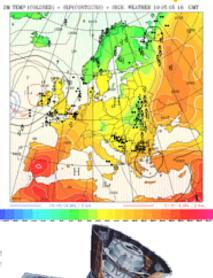


Introduction to EGEE

Fabrizio Gagliardi Project Director EGEE CERN, Switzerland

EGEE tutorial, Tokyo, 25 August 2005




www.eu-egee.org

egee

Computing intensive science

- Science is becoming increasingly digital and needs to deal with increasing amounts of data
- Simulations get ever more detailed
 - Nanotechnology design of new materials from the molecular scale
 - Modelling and predicting complex systems (weather forecasting, river floods, earthquake)
 - Decoding the human genome
- Experimental Science uses ever more sophisticated sensors to make precise measurements
 - → Need high statistics
 - → Huge amounts of data
 - → Serves user communities around the world

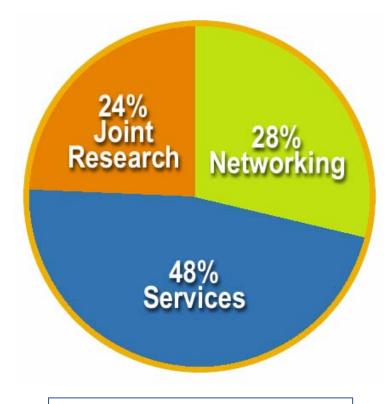
The solution: the Grid

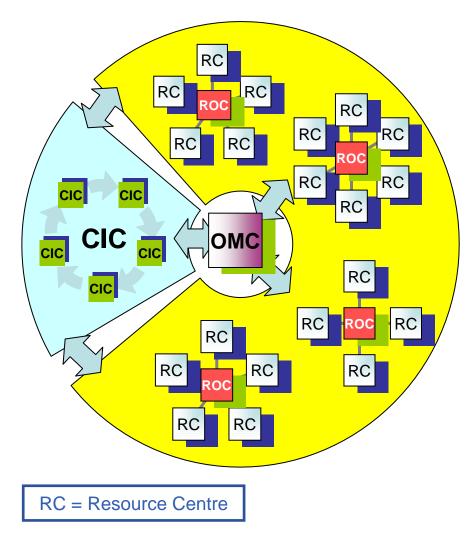
- Integrating computing and storage capacities at major computer centres
- 24/7 access, independent of geographic location
- Effective and seamless collaboration of dispersed communities, both scientific and commercial
- Ability to use thousands of computers for a wide range of applications
- Grid computing has been emerging as one of the most cost effective computing paradigms for a large class of data and compute intensive applications

The term e-Science has been coined to describe this new computing approach

- Objectives
 - consistent, robust and secure service grid infrastructure
 - improving and maintaining the middleware
 - attracting new resources and users from industry as well as science

• Structure


- 71 leading institutions in 27 countries, federated in regional Grids
- leveraging national and regional grid activities worldwide
- funded by the EU with ~32 M Euros for first 2 years starting 1st April 2004


EGEE Activities

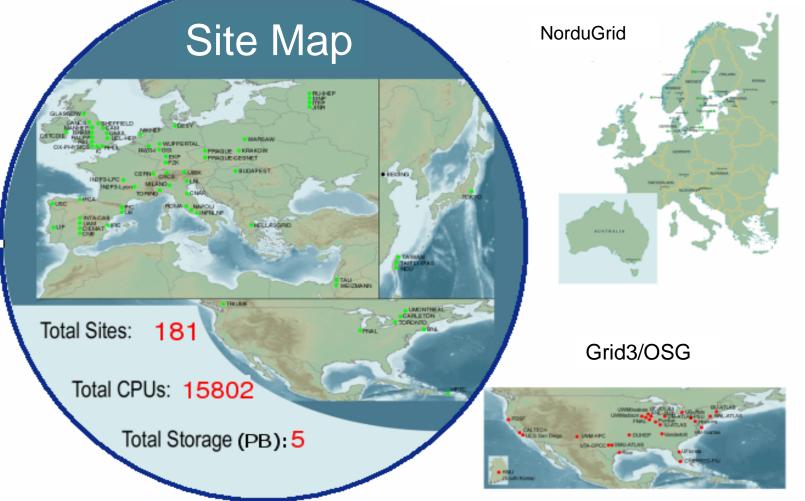
- 48 % service activities (Grid Operations, Support and Management, Network Resource Provision)
- 24 % middleware re-engineering (Quality Assurance, Security, Network Services Development)
- 28 % networking (Management, Dissemination and Outreach, User Training and Education, Application Identification and Support, Policy and International Cooperation)

Emphasis in EGEE is on operating a production grid and supporting the end-users

Grid Operations

Enabling Grids for E-sciencE

- The grid is flat, but
- *Hierarchy* of responsibility
 - Essential to scale the operation
- CICs act as a single Operations Centre
 - Operational oversight (grid operator) responsibility
 - rotates weekly between CICs
 - Report problems to ROC/RC
 - ROC is *responsible* for ensuring problem is resolved
 - ROC oversees regional RCs
- ROCs responsible for organising the operations in a region
 - Coordinate deployment of middleware, etc
- CERN coordinates sites not associated with a ROC


eGee

EGEE Infrastructure

Enabling Grids for E-sciencE

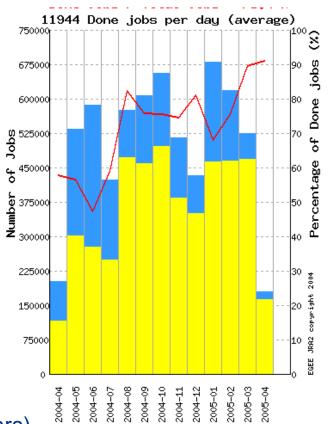
In collaboration with LCG

Status 25 July 2005

INFSO-RI-508833

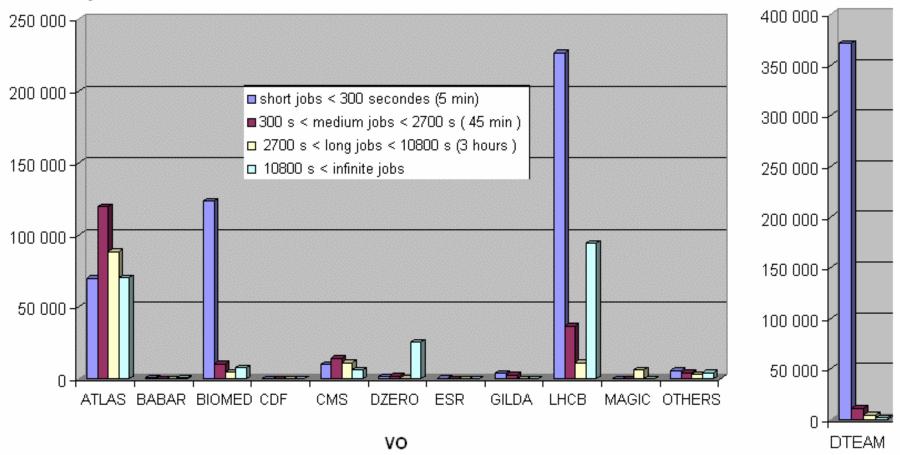
EGEE tutorial, Tokyo 7

- Operation of Production Service: real-time display of grid operations
- Accounting Information
- Selection of Monitoring tools:
 - GIIS Monitor + Monitor Graphs
 - Sites Functional Tests
 - GOC Data Base
 - Scheduled Downtimes


- Live Job Monitor
- GridIce VO + Fabric View
- Certificate Lifetime Monitor

Service Usage

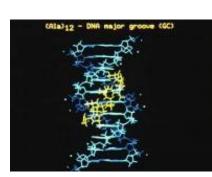
- VOs and users on the production service
 - Active VOs:
 - HEP: 4 LHC, D0, CDF, Zeus, Babar
 - Biomed
 - ESR (Earth Sciences)
 - Computational chemistry
 - Magic (Astronomy)
 - EGEODE (Geo-Physics)
 - Registered users in these VO: 600
 - + Many local VOs, supported by their ROCs
- Scale of work performed:
 - LHC Data challenges 2004:
 - >1 M SI2K years of CPU time (~1000 CPU years)
 - 400 TB of data generated, moved and stored
 - 1 VO achieved ~4000 simultaneous jobs (~4 times CERN grid capacity)

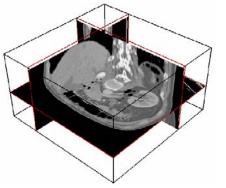

Months

Number of jobs processed per month (April 2004-April 2005)

Average job duration January 2005 – June 2005 for the main VOs

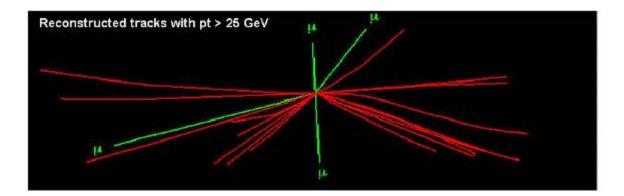
Number of jobs


EGEE pilot applications (I)


- High-Energy Physics (HEP)
 - Provides computing infrastructure (LCG)
 - Challenging:
 - thousands of processors world-wide
 - generating petabytes of data
 - 'chaotic' use of grid with individual user analysis (thousands of users interactively operating within experiment VOs)

Biomedical Applications

- Similar computing and data storage requirements
- Major challenge: security

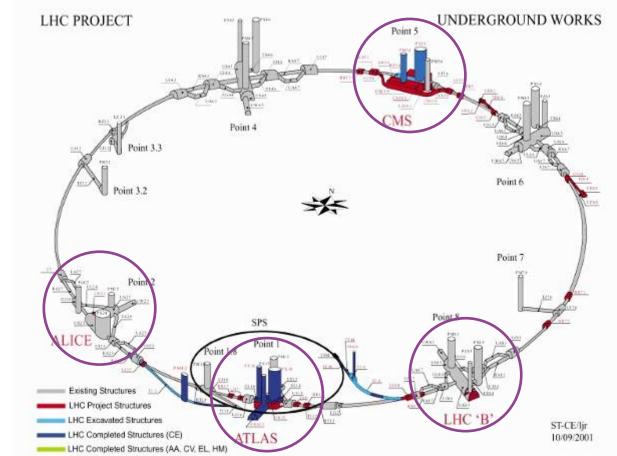

The LHC Data Challenge

Enabling Grids for E-sciencE

Starting from this event

Looking for this "signature"

→ Selectivity: 1 in 10¹³ (Like looking for a needle in 20 million haystacks)

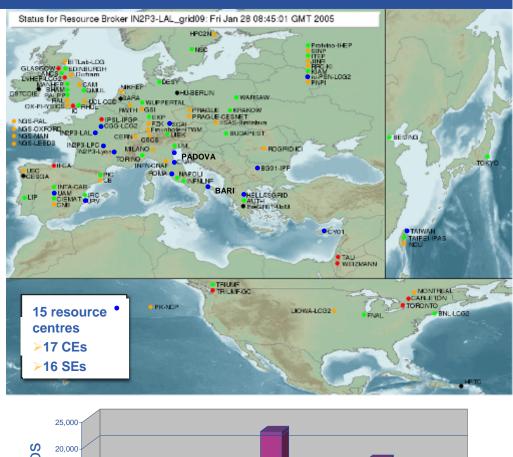


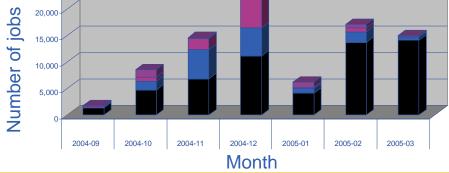
The LHC Experiments

Enabling Grids for E-sciencE

• Large Hadron Collider (LHC):

- Four experiments:
 - ALICE
 - ATLAS
 - CMS
 - LHCb
- 27 km tunnel
- Start-up in 2007
- ~ 10 PB/year
- ~ 100,000 of today's fastest PC processors



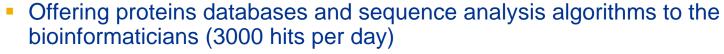


BioMed Overview

Enabling Grids for E-sciencE

- Infrastructure
 - ~2.000 CPUs
 - ~21 TB of disk
 - in 12 countries
- >50 users in 7 countries working with 12 applications
- 18 research labs
- ~80.000 jobs launched since 04/2004
- ~10 CPU years

DCL


Animie de Bictogie gi Animie des Pretéran

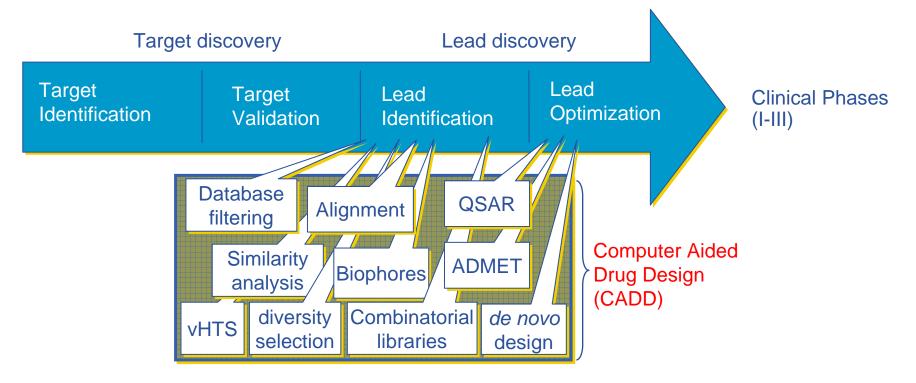
Bioinformatics

Enabling Grids for E-sciencE

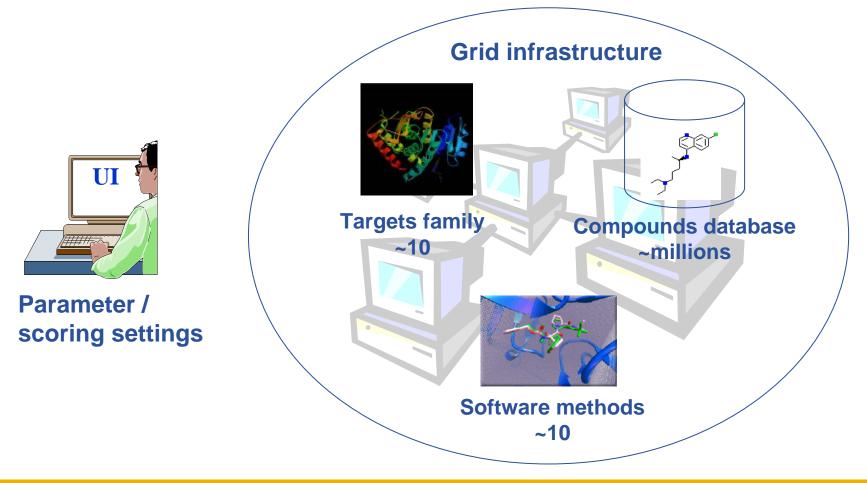
- GPS@: Grid Protein Sequence Analysis
 - Gridified version of NPSA web portal

- Need for large databases and big number of short jobs
- Objective: increased computing power
- Status: 9 bioinformatic softwares gridified
- Grid added value: open to a wider community with larger bioinformatic computations

• xmipp_MLrefine


- 3D structure analysis of macromolecules

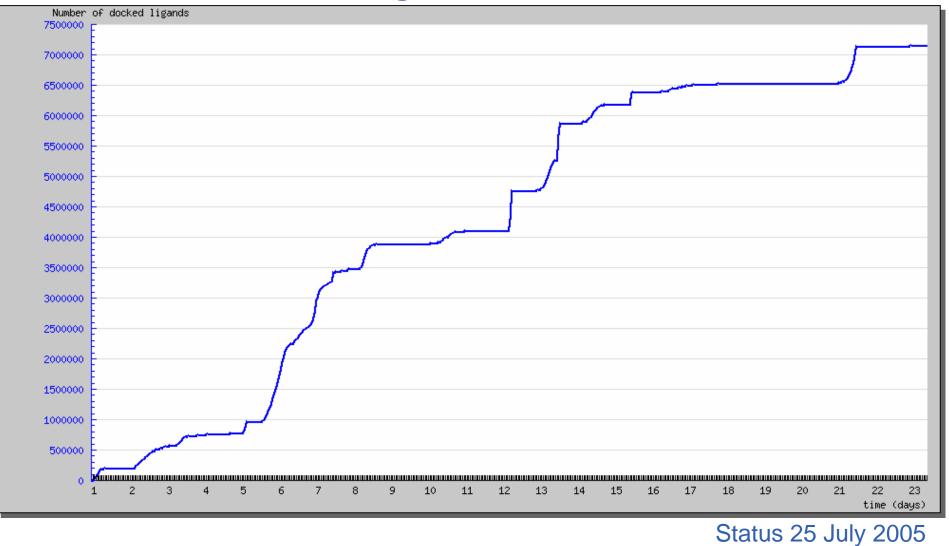
- From (very noisy) electron microscopy images
- Maximum likelihood approach to find the optimal model
- **Objective**: study molecule interaction and chem. properties
- Status: algorithm being optimised and ported to 3D
- Grid added value: parallel computation on different resources of independent jobs


 Demonstrate the relevance and the impact of the grid approach to address Drug Discovery for neglected diseases

Duration: 12 – 15 years, Costs: 500 - 800 million US \$

 Predict how small molecules, such as substrates or drug candidates, bind to a receptor of known 3D structure

Drug Discovery Data Challenge


- Enabling Grids for E-sciencE
- 4 July 26 August 2005, incl. testing
 - A. 2 weeks using commercial docking software
 - B. 3 weeks using free (but slower) docking software
- Phase A:

eeee

- 90 packets launched (~ 12900 jobs; 5 to >25 hours each)
- ~ 20 CPU years (800 to >1000 CPUs concurrently used)
- 5800 correct results collected (rest are still running...)
- file error or failures: $23\% \rightarrow$ resubmitted
- 500 GB of data produced
- Phase B:
 - 60 packets launched (~30000 jobs; 10 to >25 hours each)
 - ~ 40 CPU years
 - 1 TB will be produced
- Final data production: 1,5 TB

CGCC Drug Discovery Data Challenge (II)

• Number of docked ligands vs. time

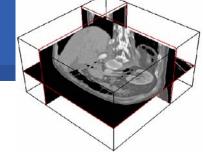
EGEE tutorial, Tokyo

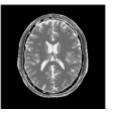
19

Medical imaging

Enabling Grids for E-sciencE

- GATE
 - Radiotherapy planning
 - Improvement of precision by Monte Carlo simulation
 - Processing of DICOM medical images


- Objective: very short computation time compatible with clinical practice
- Status: development and performance testing
- Grid Added Value: parallelisation reduces computing time
- CDSS
 - Clinical Decision Support System
 - Assembling knowledge databases
 - Using image classification engines


- **Objective:** access to knowledge databases from hospitals
- Status: from development to deployment, some medical end users
- Grid Added Value: ubiquitous, managed access to distributed databases and engines

Medical imaging

- SiMRI3D
 - 3D Magnetic Resonance Image Simulator
 - MRI physics simulation, parallel implementation
 - Very compute intensive

- Objective: offering an image simulator service to the research community
- **Status**: parallelised and now running on EGEE resources
- Grid Added Value: enables simulation of high-res images
- gPTM3D
 - Interactive tool to segment and analyse medical images
 - A non gridified version is distributed in several hospitals
 - Need for very fast scheduling of interactive tasks

- Objectives: shorten computation time using the grid
 - Interactive reconstruction time: < 2min and scalable</p>
- Status: development of the gridified version being finalized
- Grid Added Value: permanent availability of resources

- EGEE Generic Applications Advisory Panel (EGAAP)
 - UNIQUE entry point for "external" applications
 - Reviews proposals and make recommendations to EGEE management
 - Deals with "scientific" aspects, not with technical details
 - Generic Applications group in charge of introducing selected applications to the EGEE infrastructure
 - 6 applications selected so far:
 - Earth sciences (I and II)
 - MAGIC
 - Computational Chemistry
 - PLANCK
 - Drug Discovery
 - GRACE (end Feb 2005)

egee

Earth sciences applications

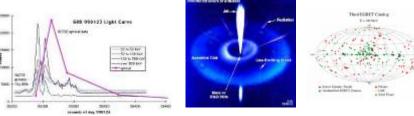
Enabling Grids for E-sciencE

- Earth Observations by Satellite
 - Ozone profiles
- Solid Earth Physics
 - Fast Determination of mechanisms of important earthquakes
- Hydrology
 - Management of water resources in Mediterranean area (SWIMED)
- Geology
 - Geocluster: R&D initiative of the Compagnie Générale de Géophysique

- A large variety of applications ported on EGEE which incites new users
- Interactive Collaboration of the teams around a project

MAGIC

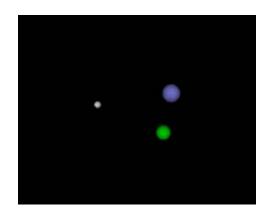
Ground based Air Cerenkov Telescope 17 m diameter

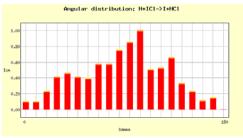

Enabling Grids for E-sciencE

• Physics Goals:

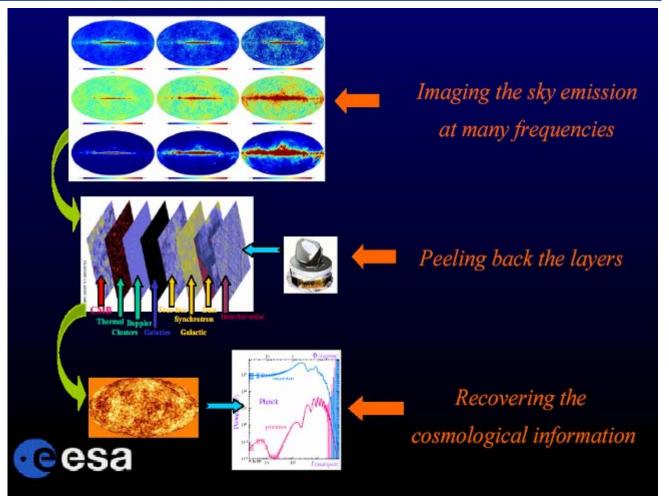
eGee

- Origin of VHE Gamma rays
- Active Galactic Nuclei
- Supernova Remnants
- Unidentified EGRET sources
- Gamma Ray Burst
- MAGIC II will come 2007
- Grid added value
 - Enable "(e-)scientific" collaboration between partners
 - Enable the cooperation between different experiments
 - Enable the participation on Virtual Observatories



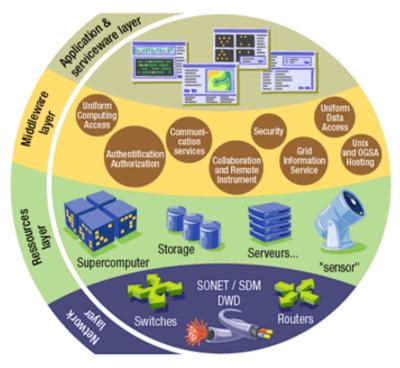

• The Grid Enabled Molecular Simulator (GEMS)

- Motivation:
 - Modern computer simulations of biomolecular systems produce an abundance of data, which could be reused several times by different researchers.
 - \rightarrow data must be catalogued and searchable
- GEMS database and toolkit:
 - autonomous storage resources
 - metadata specification
 - automatic storage allocation and replication policies
 - interface for distributed computation



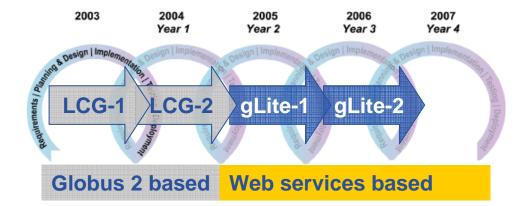
Planck

Enabling Grids for E-sciencE


- On the Grid:
 - > 12 time faster(but ~5% failures)
- Complex data
 structure
 - → data handling important
- The Grid as
 - collaboration tool
 - common user-interface
 - flexible environment
 - new approach to data and S/W sharing

Grid middleware

- The Grid relies on advanced software, called middleware, which interfaces between resources and the applications
- The GRID middleware:
 - Finds convenient places for the application to be run
 - Optimises use of resources
 - Organises efficient access to data
 - Deals with authentication to the different sites that are used
 - Runs the job & monitors progress
 - Recovers from problems
 - Transfers the result back to the scientist


- First release of gLite end of March 2005
 - Focus on providing users early access to prototype
 - Release 1.1 in May 05
 - Release 1.2 in July 05
 - see <u>www.gLite.org</u>
- Interoperability & Co-existence with deployed infrastructure
- Robust: Performance & Fault Tolerance
- Service oriented approach
- Open source license

- Intended to replace present middleware with production quality services
- Developed from existing components
- Aims to address present shortcomings and advanced needs from applications
- Prototyping short development cycles for fast user feedback
- Initial web-services based prototypes being tested

Application requirements http://egee-na4.ct.infn.it/requirements/

Architecture & Design

- Design team includes
 - Representatives from middleware providers (AliEn, Condor, EDG, Globus,...)
 - Colleagues from the Operations activity
 - Partners from related projects (e.g. OSG)
- gLite development takes into account input and experiences from applications, operations, related projects
 - Effective exchange of ideas, requirements, solutions and technologies
 - Coordinated development of new capabilities
 - Open communication channels
 - Joint deployment and testing of middleware
 - Early detection of differences and disagreements

gLite is not "just" a software stack, it is a "new" framework for international collaborative middleware development.

- More than 140 training events (including the ISSGC school) across many countries
 - >1200 people trained
 - induction; application developer; advanced; retreats
 - Material archive coming online with ~200 presentations
- Public and technical websites constantly evolving to expand information available and keep it up to date
- 3 conferences organized
 - ~ 300 @ Cork
 - ~ 400 @ Den Haag
 - ~ 450 @ Athens

• Pisa: 4th project conference 24-28 October '05

- EGEE closely collaborates with other projects, e.g.
- Flooding Crisis (CrossGrid) demonstrated at 3rd EGEE conference in Athens
 - Simulation of flooding scenarios
 - Display in Virtual Reality
 - Optimize data transport
 - > won prize for "best demo"

Collaboration with Slowak Academy of Sciences

EGEE as partner

- Ongoing collaborations
 - with non-EU partners in EGEE: US, Israel, Russia, Korea, Taiwan...
 - with other European projects, in particular:
 - GÉANT
 - DEISA
 - SEE-GRID
 - with non-European projects:
 - OSG: OpenScienceGrid (USA)
 - NAREGI (Japan)
 - Special session at EGEE-3 conference: NAREGI, OSG and EGEE security
 - discussions on VO management
 - International Grid Trust Federation
 - EU-GridPMA joining with Asia-Pacific and American counterparts
- EGEE as incubator
 - 18 recently submitted EU proposals supported
 - More proposals in next calls and national funding programmes

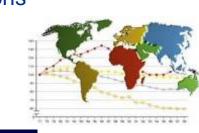
eGee

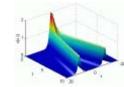
Related projects under negotiation

Enabling Grids for E-sciencE

Name	Description	Common partners with EGEE
BalticGrid	EGEE extension to Estonia, Latvia, Lithuania	KTH – PSNC – CERN
EELA	EGEE extension to Brazil, Chile, Cuba, Mexico, Argentina	CSIC – UPV – INFN – CERN – LIP – RED.ES
EUChinaGRID	EGEE extension to China	INFN – CERN – DANTE – GARR – GRNET – IHEP
EUMedGRID	EGEE extension to Malta, Algeria, Morocco, Egypt, Syria, Tunisia, Turkey	INFN – CERN – DANTE – GARR – GRNET – RED.ES
ISSeG	Site security	CERN – CSSI – FZK – CCLRC
elRGSP	Policies	CERN – GRNET
ETICS	Repository, Testing	CERN – INFN – UWM
ICEAGE	Repository for Training & Education, Schools on Grid Computing	UEDIN – CERN – KTH – SZTAKI
BELIEF	Digital Library of Grid documentation, organisation of workshops, conferences	UWM
BIOINFOGRID	Biomedical	INFN – CNRS
Health-e-Child	Biomedical – Integration of heterogeneous biomedical information for improved healthcare	CERN

From 1st EGEE EU Review in February 2005:


Enabling Grids for E-sciencE


- "The reviewers found the overall performance of the project very good."
- "... remarkable achievement to set up this consortium, to realize appropriate structures to provide the necessary leadership, and to cope with changing requirements."
- EGEE I

eGee

- Large scale deployment of EGEE infrastructure to deliver production level Grid services with selected number of applications
- EGEE II
 - Natural continuation of the project's first phase
 - Emphasis on providing an infrastructure for e-Science
 - \rightarrow increased support for applications
 - → increased multidisciplinary Grid infrastructure
 - \rightarrow more involvement from Industry
 - Extending the Grid infrastructure world-wide
 - \rightarrow increased international collaboration (Asia-Pacific is already a partner!)

From Phase I to II

- Grids are a powerful new tool for science as well as other fields
- Grid computing has been chosen by CERN and HEP as the most cost effective computing model
- Several other applications are already benefiting from Grid technologies (biomedical is a good example)
- Investments in grid projects are growing world-wide
- Europe is strong in the development of Grids also thanks to the success of EGEE and related projects

- Collaboration across national and international programmes is very important:
 - Grids are above all about collaboration at a large scale
 - Science is international and therefore requires an international computing infrastructure
- EGEE I and II are always open to further collaboration
- The Asia-Pacific region is very important for EGEE and the EU
- EGEE is already collaborating with NAREGI on security and interoperability issues
- More subjects hopefully will come up during this visit

• EGEE Website

http://www.eu-egee.org

• How to join

http://public.eu-egee.org/join/

EGEE Project Office

project-eu-egee-po@cern.ch

Contacts

Thanks for the opportunity to present EGEE to all of you and for your kind attention!