
CINTEX: Filling CINT structures
from Reflex

Applications Area Meeting
19 January 2005
P. Mato / CERN

19/01/05 LCG Application Area Meeting 2

Contents

Update on Reflex
Current Reflex/ROOT strategy
What is Cintex
Current status
Next steps
Summary

19/01/05 LCG Application Area Meeting 3

Reflex: Main Goals

Reflection is the ability of a language to introspect
it’s own structure at runtime and interact with it in
a generic way
Enhance C++ with reflection capabilities
– Non intrusive, automated

Close to the C++ ISO 14882 standard
Lightweight and standalone system
– Minimal dependencies

Small memory footprint
Multi platform
– Linux, Windows, Mac OSX, …

19/01/05 LCG Application Area Meeting 4

Reflex Classes

Type ScopeMember PropertyList Template

Object User Level

TypeName ScopeName Identification

TypeBase ScopeBase

Class

Array Function

Typedef

Pointer

Namespace

InstTemplate
InstTFunction

InstTClass

PropListImpl
MemberBase

Union

Pointer2Mem

Fundamental

Enum DataMember

FuncMember

Implementation

19/01/05 LCG Application Area Meeting 5

Example: Introspecting types

// Get type by its name
Type cl = Type::byName(“Particle”);

// If class print all data members
if (cl.isClass()) {
for (size_t d = 0; d < cl.dataMemberCount(); d++) {
Member dm = cl.dataMember(d);
cout << dm.type().name(SCOPED) << " " << dm.name() <<";";
// output comment line if exists
if (dm.propertyList().hasKey("comment")) {
cout <<"//"<< m.propertyList().propertyAsString("comment");

}
cout << endl;

}
}

19/01/05 LCG Application Area Meeting 6

Example: Generic Interaction
// Get a type by its name
Type cl = Type::byName(“Particle”);

// Instantiate an instance
Object obj = cl.construct();

// Call a method
vector<void*> args;
Object ret = obj.invoke(“function”, args);

// Alternatively
for (size_t f = 0; f < cl.functionMemberCount(); f++) {
if (cl.functionMember(d).name() == “function”) {
ret = cl.functionMember(d).invoke(obj, args);

}
}
// Delete the instance
cl.destruct(obj);

19/01/05 LCG Application Area Meeting 7

Reflex: Status

Most of the functionality is implemented
– Still missing full template support and other bits

Dictionaries are generated with the “lcgdict”
command (GCC_XML)
--reflex option
extended functionality: free functions, typedefs, etc.

(Pre) Released as part of SEAL 1.6.0
Performance and dictionary sizes very reasonable

19/01/05 LCG Application Area Meeting 8

Dictionary Library Sizes

SEAL ROOT Dictionary: 405 classes

6657.68 6582.30

0

1000

2000

3000

4000

5000

6000

7000

SealROOTDict (KB)

Reflection
Reflex

19/01/05 LCG Application Area Meeting 9

Reflex/ROOT – (December Plans)
1. Fill CINT data structures (data and methods) from

Reflex on demand.
– This is needed to allow interactive work using CINT (ROOT) for

classes for which only the Reflex dictionary exists. The code for
this already exists in POOL for the LCG/CINT dictionary
gateway.

– Estimated to 3-4 months
2. Re-implement the ROOT metaclasses (TClass, TMethod,

etc.) on top of Reflex
– Estimated to 2 months

3. Adaptation of the CINT interpreter to run on top of
Reflex directly is foreseen in principle but detailed
planning will only be done after tasks 1 and 2 are
completed.

19/01/05 LCG Application Area Meeting 10

Reflex and ROOT

.h Reflex
API

lcgdict Reflex
data

.h

ROOT
Metaclasses

rootcint CINT
data

CINT
Interpreter

ROOT
I/O

Python
Interpreter

PyReflex Python
data

CINTex

19/01/05 LCG Application Area Meeting 11

Cintex: Driving Use Case

Be able to write “simple” analysis macros (CINT)
accessing an existing file produced by POOL
without the need of loading POOL+SEAL+Exp-
Framework+…
– Cintex and Event classes (Reflex) dictionaries need to

be loaded
– Event class methods would be available

Some Caveats
– Strongly dependent on the “Event Model” design quality
– POOL specialized streamers not available
– POOL references not available (more work needed to

understand)

19/01/05 LCG Application Area Meeting 12

Cintex: Current Functionality
At loading time, Cintex registers itself to Reflex to get
callback when a new classes are defined in Reflex
For each class
– Calls the appropriate CINT functions to create the class with their

data and function members, and inheritance tree.
– Creates the necessary namespaces and “forward declares” other

types on-the-fly
Provides a set of “generic” adapters for the “stub”
functions between CINT and Reflex
Current functionality quite complete
Most of the knowledge (and code) taken from the POOL
RootStorageSvc (Markus Frank)

19/01/05 LCG Application Area Meeting 13

Example: Interactive session
gSystem->Load("lcg_Cintex"); // Load Cintex
gSystem->Load("SealCLHEPDict"); // Load any Reflex dictionary

using namespace CLHEP;
Hep3Vector v1(10.,20.,30.);
Hep3Vector v2(v1);
cout << v2.r() << endl;

RanluxEngine r;
RandFlat f(r);
RandGauss g(r,0,1);
TH1F hf("hf","flat distribution",100,0,1);
TH1F hg("hg","gauss distribution",100,-5,5);
for (int i = 0; i < 10000; i ++) {
hf.Fill(f.fire());
hg.Fill(g.fire());

}

19/01/05 LCG Application Area Meeting 14

Example: Simple I/O example
gSystem->Load("lcg_Cintex"); // Load Cintex
gSystem->Load("SealCLHEPDict"); // Load any Reflex dictionary

CLHEP::Hep3Vector v0;
CLHEP::Hep3Vector v1(22,1,1);

TFile fo("data.root","RECREATE");
fo.WriteObjectAny(&v0, "CLHEP::Hep3Vector","my_v0");
fo.WriteObjectAny(&v1, "CLHEP::Hep3Vector","my_v1");
fo.Close();

TFile fi("data.root");
CLHEP::Hep3Vector* vp;
vp = (CLHEP::Hep3Vector*)fi.FindObjectAny("my_v1");
cout << " x = " << vp->x()

<< " y = " << vp->y()
<< " z = " << vp->z() << endl;

fi.Close();

19/01/05 LCG Application Area Meeting 15

Cintex: Current Limitations

CINT optimization switched off
– In optimize mode the single stub function adapter can

not obtain the “context”
– gROOT->ProcessLine(".O 0");

Virtual inheritance
– Not yet there. No major problems foreseen.

I/O problems
– Writing seems to work always (spurious messages)
– Sometimes data misalignment problems on reading
– The main use case in danger!

19/01/05 LCG Application Area Meeting 16

Example: Accessing POOL files
gROOT->ProcessLine(".O 0");
gSystem->Load("liblcg_Cintex");
gSystem->Load("libEventModelDict");

using namespace pool_tutorial;

TFile f("pool_tutorial_1.root");
Hit* h = 0;
TTree* tree = (TTree*)f.Get("hits");
tree->SetBranchAddress("Hit", &h);

int n = tree->GetEntries();
for (int i = 0; i < n; i++) {
tree->GetEntry(i);
cout << "Hit " << i << ": " << h->x() << " " << h->y()

<< " " << h->z() << " " << h->value() << endl;
}
f.Close();

Unfortunately does
not work today

19/01/05 LCG Application Area Meeting 17

Next steps

(Pre) Released as part of SEAL 1.6.0
– Requires new Reflex dictionaries + ROOT 4

Complete the basic functionality
– Virtual inheritance, I/O read misalignments,

templates, variables, etc.
– Some optimization still possible

Try with a “real” use case
– E.g. An experiment POOL file
– Looking for a contact person from ATLAS and CMS

Defined the roles of Cintex (CINT part) and the
RootStorageSvc in POOL (I/O part)

19/01/05 LCG Application Area Meeting 18

Cintex and RootStorageSvc

RootStorageSvc gets simple
Separation of concerns
– POOL should use Cintex as the Reflex/CINT gateway
– POOL should interact with ROOT I/O for I/O related issues

» Special streamers, object references, optimization, etc.

ROOT
I/O

CINT
data

CINT
Interpreter

ROOT
Metaclasses

Cintex

POOL
RootStorageSvc

19/01/05 LCG Application Area Meeting 19

Summary
Reflex is getting better and functionally completed
– Reduced the number of “user level” classes
– Ready to be integrated in PyReflex, POOL, etc.

Cintex provides the possibility to use CINT (ROOT) for
any class with a Reflex dictionary
The first task in the Reflex/ROOT convergence is
“almost” completed
– Requires validation from experiments (ATLAS and CMS)
– Requesting contact person to try Cintex in their environment

Next steps
– Adaptation of POOL (RootStorageMgr) to Reflex and Cintex
– Start implementing second task of Reflex/ROOT convergence plan

