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Reflex: Main Goals

Reflection is the ability of a language to introspect 
it’s own structure at runtime and interact with it in 
a generic way
Enhance C++ with reflection capabilities
– Non intrusive, automated

Close to the C++ ISO 14882 standard
Lightweight and standalone system
– Minimal dependencies

Small memory footprint
Multi platform
– Linux, Windows, Mac OSX, …
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Reflex Classes

Type ScopeMember PropertyList Template

Object User Level
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FuncMember

Implementation 
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Example: Introspecting types

// Get type by its name
Type cl = Type::byName(“Particle”);

// If class print all data members
if ( cl.isClass() ) {
for ( size_t d = 0; d < cl.dataMemberCount(); d++ ) {
Member dm = cl.dataMember(d);
cout << dm.type().name(SCOPED) << " " << dm.name() <<";";
// output comment line if exists
if ( dm.propertyList().hasKey("comment") ) {
cout <<"//"<< m.propertyList().propertyAsString("comment");

}
cout << endl;

}
}
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Example: Generic Interaction
// Get a type by its name
Type cl = Type::byName(“Particle”);

// Instantiate an instance
Object obj = cl.construct();

// Call a method
vector<void*> args;
Object ret = obj.invoke(“function”, args );

// Alternatively
for ( size_t f = 0; f < cl.functionMemberCount(); f++ ) {
if (cl.functionMember(d).name() == “function”) {
ret = cl.functionMember(d).invoke(obj, args);

}
}
// Delete the instance
cl.destruct(obj);
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Reflex: Status

Most of the functionality is implemented
– Still missing full template support and other bits

Dictionaries are generated with the “lcgdict” 
command (GCC_XML)
--reflex option
extended functionality: free functions, typedefs, etc.

(Pre) Released as part of SEAL 1.6.0
Performance and dictionary sizes very reasonable
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Dictionary Library Sizes

SEAL ROOT Dictionary: 405 classes
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Reflex/ROOT – (December Plans)
1. Fill CINT data structures (data and methods) from 

Reflex on demand. 
– This is needed to allow interactive work using CINT (ROOT) for 

classes for which only the Reflex dictionary exists. The code for 
this already exists in POOL for the LCG/CINT dictionary 
gateway.

– Estimated to 3-4 months
2. Re-implement the ROOT metaclasses (TClass, TMethod, 

etc.) on top of Reflex
– Estimated to 2 months

3. Adaptation of the CINT interpreter to run on top of 
Reflex directly is foreseen in principle but detailed 
planning will only be done after tasks 1 and 2 are 
completed.



19/01/05 LCG Application Area Meeting 10

Reflex and ROOT
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Cintex: Driving Use Case

Be able to write “simple” analysis macros (CINT) 
accessing an existing file produced by POOL 
without the need of loading POOL+SEAL+Exp-
Framework+…
– Cintex and Event classes (Reflex) dictionaries need to 

be loaded
– Event class methods would be available

Some Caveats
– Strongly dependent on the “Event Model” design quality
– POOL specialized streamers not available
– POOL references not available (more work needed to 

understand) 



19/01/05 LCG Application Area Meeting 12

Cintex: Current Functionality
At loading time, Cintex registers itself to Reflex to get 
callback when a new classes are defined in Reflex
For each class
– Calls the appropriate CINT functions to create the class with their 

data and function members, and inheritance tree.
– Creates the necessary namespaces and “forward declares” other 

types on-the-fly
Provides a set of “generic” adapters for the “stub” 
functions between CINT and Reflex
Current functionality quite complete
Most of the knowledge (and code) taken from the POOL 
RootStorageSvc (Markus Frank)
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Example: Interactive session
gSystem->Load("lcg_Cintex");    // Load Cintex 
gSystem->Load("SealCLHEPDict"); // Load any Reflex dictionary

using namespace CLHEP;
Hep3Vector v1(10.,20.,30.);
Hep3Vector v2(v1);
cout << v2.r() << endl;

RanluxEngine r;
RandFlat f(r);
RandGauss g(r,0,1);
TH1F hf("hf","flat distribution",100,0,1);
TH1F hg("hg","gauss distribution",100,-5,5);
for (int i = 0; i < 10000; i ++) { 
hf.Fill(f.fire());
hg.Fill(g.fire());

}
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Example: Simple I/O example
gSystem->Load("lcg_Cintex");    // Load Cintex 
gSystem->Load("SealCLHEPDict"); // Load any Reflex dictionary

CLHEP::Hep3Vector v0;
CLHEP::Hep3Vector v1(22,1,1);

TFile fo("data.root","RECREATE");
fo.WriteObjectAny(&v0, "CLHEP::Hep3Vector","my_v0");
fo.WriteObjectAny(&v1, "CLHEP::Hep3Vector","my_v1");
fo.Close();

TFile fi("data.root");
CLHEP::Hep3Vector* vp;
vp = (CLHEP::Hep3Vector*)fi.FindObjectAny("my_v1");
cout << " x = " << vp->x() 

<< " y = " << vp->y() 
<< " z = " << vp->z() << endl;

fi.Close();
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Cintex: Current Limitations

CINT optimization switched off
– In optimize mode the single stub function adapter can 

not obtain the “context”
– gROOT->ProcessLine(".O 0");

Virtual inheritance
– Not yet there. No major problems foreseen.

I/O problems
– Writing seems to work always (spurious messages)
– Sometimes data misalignment problems on reading
– The main use case in danger! 
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Example: Accessing POOL files 
gROOT->ProcessLine(".O 0");
gSystem->Load("liblcg_Cintex");
gSystem->Load("libEventModelDict");

using namespace pool_tutorial;

TFile f("pool_tutorial_1.root");
Hit* h = 0;
TTree* tree = (TTree*)f.Get("hits");
tree->SetBranchAddress("Hit", &h);

int n = tree->GetEntries();
for ( int i = 0; i < n; i++ ) {
tree->GetEntry(i);
cout << "Hit " << i << ": " << h->x() << " " << h->y() 

<< " " << h->z() << " " << h->value() << endl;
}
f.Close();

Unfortunately does 
not work today
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Next steps

(Pre) Released as part of SEAL 1.6.0
– Requires new Reflex dictionaries + ROOT 4

Complete the basic functionality
– Virtual inheritance, I/O read misalignments, 

templates, variables, etc.
– Some optimization still possible

Try with a “real” use case
– E.g.  An experiment POOL file
– Looking for a contact person from ATLAS and CMS

Defined the roles of Cintex (CINT part) and the 
RootStorageSvc in POOL (I/O part)
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Cintex and RootStorageSvc

RootStorageSvc gets simple
Separation of concerns
– POOL should use Cintex as the Reflex/CINT gateway
– POOL should interact with ROOT I/O for I/O related issues

» Special streamers, object references, optimization, etc. 
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data
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Summary
Reflex is getting better and functionally completed
– Reduced the number of “user level” classes
– Ready to be integrated in PyReflex, POOL, etc.

Cintex provides the possibility to use CINT (ROOT) for 
any class with a Reflex dictionary
The first task in the Reflex/ROOT convergence is 
“almost” completed
– Requires validation from experiments (ATLAS and CMS)
– Requesting contact person to try Cintex in their environment

Next steps
– Adaptation of POOL (RootStorageMgr) to Reflex and Cintex
– Start implementing second task of Reflex/ROOT convergence plan


