
Israeli Grid Workshop, Ra’anana, Israel, Sep 2005

Message Passing Interface

Vered Kunik - Israeli Grid NA3 Team

EGEE is a project funded by the European Union under contract IST-2003-508833

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 2

Outline

Introduction

Parallel Computing

Parallel Programming models

Designing parallel programs

MPI

Using MPI on the Grid

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 3

Traditionally, programs were written for serial computers
processing time is limited by hardware

The need for speed: Nowadays, we are required to
solve memory intensive problems with greater speed

requires a strategy for performing large, complex
tasks faster = parallelism

parallel computing

Introduction

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 4

Aspects of parallel computing:
Parallel computer architectures
Parallel programming models

What is a parallel computer ?
A single computer with multiple processors
An arbitrary number of computers connected by a network
(e.g., a cluster)
A combination of both.

Parallel Computing

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 5

All parallel computers use multiple processors

inter-processor communication

Inter-processor communication is required to:

Exchange information and data between processors

Synchronize processors activities

The means processors communicate depends on memory
architecture:

Shared memory parallel computers

Distributed memory parallel computers

Parallel Computing – cont’d

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 6

Shared memory parallel computers (UMA / SMP, NUMA)
Multiple processor operate independently but share access
to a global memory address space via a high-speed
memory bus

Changes in a memory location effected by one
processor are visible to all other processors

Basics of Parallel computers –
cont’d

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 7

Basics of Parallel computers –
cont’d

Distributed memory parallel computers
A collection of independent processors connected via a
communication network

Each processors has its own local memory

requires a communication network to connect

inter-processor memory

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 8

Basics of Parallel computers –
cont’d

Hybrid Distributed-Shared Memory
A shared memory component: a cache coherent SMP

Processors on a given SMP can address that machine's
memory as global

A distributed memory component: networking of multiple
SMPs

SMPs know only about their

own memory (not the memory

on another SMP)

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 9

Parallel programming models

Parallel programming models exist as an abstraction above
hardware and memory architectures

can be implemented on any underlying hardware

The most common parallel programming models are:

Shared Memory: Threads

Data parallel

Message passing: MPI, PVM, MPL

“High-level” programming models: SPMD, MPMD

These models are NOT specific to a particular type of
machine or memory architecture

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 10

Parallel programming models –
cont’d

There is no "best" model

which model to use is often a combination of what is

available and personal choice

Message Passing

A set of processes that use their own local memory
during computation

Multiple processes can reside on the same physical
machine as well across an arbitrary number of machines

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 11

Parallel programming models –
cont’d

Message passing – cont’d
Processes exchange data through communications by sending and receiving
messages

Data transfer requires cooperative operations to be performed by each
process (i.e., a “matched” send-receive)

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 12

Designing parallel programs

What does parallel programming mean ?
Decomposing the problem into pieces that multiple
processors can perform

Developing parallel programs:
Understanding the problem and program

Decomposition i.e., break the problem into discreet
"chunks"

Distributing the “chunks” as processes which the processor
worked on simultaneously

Coordinating the work and communication of the processors

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 13

Domain decomposition – “data parallelism”

The data is divided into pieces of approximately the same
size

Data “slices” are mapped to different processes

Each process works only on the portion of the data that is
assigned to it

Requires periodic

communication between

the processes

Designing parallel programs –
cont’d

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 14

Functional Decomposition – “task parallelism”

The focus is on the computation that is to be performed
rather than on the data

Each process performs a portion of the overall work

Processes are assigned to the processors as they become
available

Implemented in a client-server

paradigm

As each process finishes its

task, it is assigned a new input

Designing parallel programs –
cont’d

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 15

Designing parallel programs –
cont’d

An Example: π calculation
Inscribe a circle in a square
Randomly generate points in
the square (the more points
= better approximation)
Determine the number of
points in the square that are
also in the circle
Let k be the number of
points in the circle divided
by the number of points in
the square
π ~ 4 k

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 16

Designing parallel programs –
cont’d

Serial solution:
npoints = 10000;
circle_count = 0;
do j = 1,npoints

// generate 2 random numbers between 0 and 1
xcoordinate = random1;
ycoordinate = random2;
if (xcoordinate, ycoordinate) inside circle then

circle_count = circle_count + 1;
end do
PI = 4.0*circle_count/npoints;

most of running time

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 17

Designing parallel programs –
cont’d

Parallel solution
Break the loop into portions that can be executed by various
processes

In order to approximate π :
Each process executes its portion of the loop a number of times
Each process can do its work without requiring any information from the
other tasks there are no data dependencies)
Uses the SPMD model: one task acts as master and collects the results

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 18

Designing parallel programs –
cont’d

npoints = 10000;
circle_count = 0;
p = number of processes;
num = npoints/p;
find out if I am MASTER or WORKER
do j = 1 , num

// generate 2 random numbers between 0 and 1
xcoordinate = random1;
ycoordinate = random2;
if (xcoordinate, ycoordinate) inside circle then

circle_count = circle_count + 1;
end do
if I am MASTER

receive from WORKERS their circle_counts;
compute PI // use MASTER and WORKER calculations

else if I am WORKER
send to MASTER circle_count;

endif

Changes for parallelism

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 19

MPI

MPI = Message Passing Interface (C, C++, Fortran)

A standard for message-passing libraries for parallel
computing

Employs the SPMD programming model: multiple instances
of the same program run concurrently in separate address
spaces communicating via messages

Why MPI ?
Most portable (not hardware-dependent), functional

(~150 functions) and widely available

Designed for the widest possible range of parallel processors

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 20

MPI – cont’d

General MPI program structure:

MPI include file

Initialize MPI Environment

Do work and make message passing calls

Terminate MPI Environment

#include “mpi.h”

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 21

MPI – cont’d

MPI uses objects called communicators and groups to
define which collection of processes may communicate with
each other

MPI_COMM_WORLD = predefined communicator that
includes all of your MPI processes

Rank: within a communicator,
when the system initializes a process
its gives the process its own unique,
integer identifier
Ranks are contiguous and begin at zero

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 22

MPI – cont’d

6 most used MPI functions:

Receives a messageMPI_Recv

Sends a messageMPI_Send

Determines the label of the calling processMPI_Comm_rank

Determines the number of processesMPI_Comm_size

Terminates MPIMPI_Finalize

Initializes MPIMPI_Init

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 23

MPI – cont’d

int MPI_Init(int *argc, char **argv)
Initializes the MPI execution environment

All MPI programs must call MPI_Init before any other MPI
routine is called

must be called only once in an MPI program

In C, it may be used to pass the command line arguments to
all processes

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 24

MPI – cont’d

int MPI_Finalize()
Terminates the MPI execution environment should be the last
MPI routine called in every MPI program (‘shutdown’)

int MPI_Comm_size(MPI_Comm comm, int *size)
Determines the number of processes in the group associated
with a communicator

Generally used within the communicator
MPI_COMM_WORLD

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 25

MPI – cont’d

int MPI_Comm_rank(MPI_Comm comm, int *rank)
Determines the rank of the calling process within the
communicator

Each process is assigned a unique integer rank between 0
and (#processes – 1) within MPI_COMM_WORLD

If a process becomes associated with other communicators,
it will have a unique rank within each of these as well

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 26

MPI – cont’d

MPI_PACKED
MPI_BYTE

Long doubleMPI_LONG_DOUBLE
doubleMPI_DOUBLE
floatMPI_FLOAT
Unsigned long intMPI_UNSIGNED_LONG
Unsigned intMPI_UNSIGNED
Unsigned short intMPI_UNSIGNED_SHORT
Unsigned charMPI_UNSIGNED_CHAR
Signed long intMPI_LONG
Signed intMPI_INT
Signed short intMPI_SHORT
Signed charMPI_CHAR

C DatatypeMPI Datatype

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 27

MPI – cont’d

Created when MPI_Init
is called

An Example:
#include “mpi.h”
Main(int argc, char *argv[])

{

int npes, myrank;

MPI_Init(&args, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

/*do some work*/
MPI_Finalize();

}

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 28

MPI – cont’d

Communication:
Point-to-Point communication

Involves message passing between two, and only two,
different MPI tasks
One task is performing a send operation and the other task
is performing a matching receive operation
There are different types of send and receive routines used
for different purposes:

Synchronous send
Blocking send / blocking receive
etc`

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 29

MPI – cont’d

Collective communication

Collective communication must involve all processes in the
scope of a communicator

Collective communication routines:

Synchronization - processes wait until all members of
the group have reached the synchronization point

Data Movement - broadcast, scatter/gather, all to all

Collective Computation (reductions) - one member of
the group collects data from the other members and
performs an operation (min, max, etc.) on that data

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 30

MPI – cont’d

MPI_Bcast()
Broadcasts (sends) a message from the process with rank
"root" to all other processes in the group

process 0 process 1 process 2 process 3

Message (before)

Message (after)

MPI_Bcast(&msg,1,MPI_INT,1,MPI_COMM_WORLD)

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 31

Using MPI on the Grid

MPICH is a public domain version of the MPI library

The JDL JobType attribute should be set to MPICH

The NodeNumber attribute should be used to indicate the
required number of CPU’s

The following are to the jdl Requirements attribute:
Member(“MpiCH”,
other.GlueHostApplicationSoftwareRunTimeEnvironment)

Indicate that the MPICH runtime environment must be
installed on the computing element

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 32

Using MPI on the Grid – cont’d

other.GlueCEInfoTotalCPUs >= NodeNumber
number of CPUs must be at least equal to the required
number of nodes

To the Rank attribute:
other.GlueCEStateFreeCPUs

The CE with the largest number of free CPUs is chosen

Lets use the Grid to approximate π

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 33

Type = "Job";
JobType = "MPICH";

Executable = "MPItest.sh";
Arguments = "cpi 2";
NodeNumber = 2;

StdOutput = "test.out";
StdError = "test.err";

InputSandbox = {"MPItest.sh","cpi"};
OutputSandbox = {"test.err","test.out","executable.out"};

Requirements = other.GlueCEInfoLRMSType == "PBS" ||
other.GlueCEInfoLRMSType == "LSF";

Using MPI on the Grid – cont’d

The executable

of required CPUs

Renders the computation to the WNs
allocated for the parallel execution

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 34

Using MPI on the Grid – cont’d
#!/bin/sh
this parameter is the binary to be executed
EXE=$1
this parameter is the number of CPU's to be reserved for parallel execution
CPU_NEEDED=$2
prints the name of the master node
echo "Running on: $HOSTNAME"
echo "*************************************"
if [-f "$PWD/.BrokerInfo"] ; then
TEST_LSF=`edg-brokerinfo getCE | cut -d/ -f2 | grep lsf`
else
TEST_LSF=`ps -ef | grep sbatchd | grep -v grep`
fi
if ["x$TEST_LSF" = "x"] ; then
prints the name of the file containing the nodes allocated for parallel execution
echo "PBS Nodefile: $PBS_NODEFILE"
print the names of the nodes allocated for parallel execution
cat $PBS_NODEFILE
echo "*************************************"
HOST_NODEFILE=$PBS_NODEFILE
else
print the names of the nodes allocated for parallel execution
echo "LSF Hosts: $LSB_HOSTS"
loops over the nodes allocated for parallel execution
HOST_NODEFILE=`pwd`/lsf_nodefile.$$
for host in ${LSB_HOSTS}
do
echo $host >> ${HOST_NODEFILE}
done
fi

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 35

Using MPI on the Grid – cont’d

echo "*************************************"
prints the working directory on the master node
echo "Current dir: $PWD"
echo "*************************************"

for i in `cat $HOST_NODEFILE` ; do
echo "Mirroring via SSH to $i"
creates the working directories on all the nodes allocated for parallel execution
ssh $i mkdir -p `pwd`
copies the needed files on all the nodes allocated for parallel execution
/usr/bin/scp -rp ./* $i:`pwd`
checks that all files are present on all the nodes allocated for parallel execution
echo `pwd`
ssh $i ls `pwd`
sets the permissions of the files
ssh $i chmod 755 `pwd`/$EXE
ssh $i ls -alR `pwd`
echo "@@@@@@@@@@@@@@@"
done

execute the parallel job with mpirun
echo "*********************************"
echo "Executing $EXE"
chmod 755 $EXE
ls -l
mpirun -np $CPU_NEEDED -machinefile $HOST_NODEFILE `pwd`/$EXE > executable.out
echo "*********************************"

IV Workshop INFN Grid, Bari, 25-27.10.2004 - 36

MPI job submission tutorial

