
ROOT Data bases access 1

ROOT
Data Bases access

LCG Data Bases deployment workshop
19 October

René Brun

CERN

Rene Brun ROOT Data bases access 2

Plan

� Connections between ROOT and RDBMs
� Performance issues
� Utilities

Rene Brun ROOT Data bases access 3

ROOT File types & Access
(SQL implemented in 1999)

Local
File

X.xml

RFIO Chirp

CastorDcacheLocal
File

X.root

http rootd/xrootd
Oracle

SapDb

PgSQL

MySQL

TFile
TKey/TTree

TStreamerInfo

user

TSQLServer
TSQLRow

TSQLResult

Rene Brun ROOT Data bases access 4

RDBC (from V.Onuchin)
(implemented in 2000)

� The RDBC aims for JDBC 2.0 compliance.
� It contains the set of classes corresponding to JDBC 2.0 one
� TSQLDriverManager, TSQLConnection, TSQLStatement, TSQLPreparedStatement,
� TSQLCallableStatement, TSQLResultSet, TSQLResultSetMetadata, TSQLDatabaseMetadata

� The RDBC aims for ROOT SQL compliance, e.g. TSQLResult is subclass of
TSQLResultSet

� RDBC implementation is based on libodbc++ library
(http://orcane.net/freeodbc++) developed

� by Manush Dodunekov manush@stendahls.net
� Connection string can by either JDBC style i.e.

<dbms>://<host>[:<port>][/<database>], or
� ODBC style (as DSN) e.g. "dsn=minos;uid=scott;pwd=tiger"

� Exceptions handling is implemented via ROOT signal-slot communication
mechanism.

� RDBC has an interface which allows to store ROOT objects in relational database as
BLOBs.
� For example, it is possible to store ROOT histograms, trees as a cells of SQL table.

� RDBC provides connection pooling, i.e. reusing opened connections during ROOT
session.

� RDBC has an interface which allows to convert TSQLResultSets to ROOT TTrees
� RDBC with Carrot (ROOT Apache Module) allows to create three-tier architecture.

used by
 Phenix

and Min
os

Rene Brun ROOT Data bases access 5

File types & Access in 5.04

Local
File

X.xml

RFIO Chirp

CastorDcacheLocal
File

X.root

http rootd/xrootd
Oracle

SapDb

PgSQL

MySQL

TFile
TKey/TTree

TStreamerInfo

user

TSQLServer
TSQLRow

TSQLResult

TTreeSQL

Rene Brun ROOT Data bases access 6

New RDBMS interface in v5

� New class TTreeSQL
� support the TTree containing branches created using a leaf list (eg.

hsimple.C).

� Access any RDBMS tables from TTree::Draw

� Create a TTree in split mode
� Î creating a RDBMS table and filling it.

� The table can be processed by SQL directly.
� The interface uses the normal I/O engine

� including support for Automatic Schema Evolution.

Rene Brun ROOT Data bases access 7

TTreeSQL Syntax
� Currently:

� ROOT:

� MySQL:

� Coming:

�

TFile *file = new TFile("simple.root","RECREATE");
TTree *tree; file->GetObject(“ntuple”,tree);

TSQLServer*dbserver = TSQLServer::Connect("mysql://…”,db,user,passwd);
TTree *tree = new TTreeSQL(dbserver,"rootDev","ntuple");

TTree *tree = TTree::Open(“root:/simple.root/ntuple”);

TTree *tree = TTree::Open(“mysql://host../rootDev/ntuple”);

Rene Brun ROOT Data bases access 8

TTreeSQL Optimization

� On a simple test with a local MySQL database:
� Reading is 5x slower than with ROOT I/O
� Writing is functional but requires significant optimization of the

code.

� Current implementation of the SQL
communication (text oriented) could be greatly
improved.
� Could use some expertise in MySQL and odbc (to reinvigorate

RDBC)

� Following discussions at the ROOT workshop,
this will become low priority.

Rene Brun ROOT Data bases access 9

ROOT

Run Manager

Virtual MC

EVGEN

Primary
Generator

Magnetic
Field

Module

Detector

Geometry
Manager

IO Manager

Tasks

Delta Tracking

CBM Analysis at GSI

digitizers

GeoInterface

RunTime
DataBase

Root files
Configuration,
Parameters,
Geometry

Oracle

Configuration,
Parameters,
Geometry

Root files
MCPoints, Hits,

Digits, Tracks

Rene Brun ROOT Data bases access 10

Reading Parameters: Oracle
� gSystem->Load ("libOra");
� CbmRunAna * fRun = new CbmRunAna();
� CbmRuntimeDb* rtdb=fRun->GetRuntimeDb();
� CbmParOraIo* ora=new CbmParOraIo();
� ora->open();
� rtdb->setFirstInput(ora);
� CbmGenericParOraIo* genio=
� (CbmGenericParOraIo*)(ora-

>getDetParIo("CbmGenericParIo"));
� CbmParTest* par=(CbmParTest*)(rtdb->getContainer("CbmParTest"));

� genio->readFromLoadingTable(par,RunId);
� par->print();
� par->printParams();
�

Rene Brun ROOT Data bases access 11

ROOT & RDBMS
go & nogo

� ROOT interface with RDBMS is minimal
� Because there are many different use cases, we see

many users with their own interface that seems
appropriate in most cases.

� Because of scalability issues, the move to read-only files
in a distributed environment is becoming obvious.

� We prefer to invest in a direction that we believe is very
important for data analysis:
� Optimize the use of read-only files in a distributed environment: size,

read speed, read ahead & cache, selective reads (rows &columns) with
Trees.

� Optimize the performance: xrootd, load balancing, authentication with
caching for interaction, robustness.

Rene Brun ROOT Data bases access 12

Scalability issues

� It is not the same problem any more if the CONDB is 10
Terabytes instead of 10 Gigabytes.

� CDF(300 Gb), Compass (1Tb), Alice (nTb)
� 1000 jobs accessing simultaneously a central DB looks

crazy. This does not fit well with distributed computing.
� Independent read only files with load balanced servers

(a la xrootd) seems the way to go.
� Keep the info in larger and structured objects, eg a RUN

data structure instead of an access per event.
� Keep the RDBMS for what they are good at.

ROOT Data bases access 13

Performance Issues

ROOT compared to RDBMs
Making ROOT access faster

Rene Brun ROOT Data bases access 14

ROOT compared to RDBMs

� Several comparisons between ROOT and SQL
� Size

� Typically 3 to 10 times smaller

� Selectivity in rows or/and columns
� 2 to 30 times faster on local file
� Same speed as MySQL on remote file with no cache
� 10 times faster than mySQL when UseCache

Next two examples are from Atlas

Rene Brun ROOT Data bases access 15

ROOT Collections: Query Time Vs. Acceptance Fraction

� Query time measured as a
function of acceptance fraction.

� ROOT and Oracle query times
still comparable at 75% but
ROOT decreases linearly at
faster rate.

� Oracle and MySQL reach
minimum values ~27 sec. and
~34 sec. respectively at about
1% but ROOT continues to
decrease linearly.

� Minimum values again refer to
minimum amount of time
needed for relational databases
to scan the event sample.

Rene Brun ROOT Data bases access 16

ROOT Collections: Query Time Vs. Column Selection

� Query time measured as function
of number of columns selected.

� ROOT and Oracle query times
equivalent when all 335 columns
selected but ROOT query time
decreases more rapidly with
decreasing column selection.

� Oracle and MySQL query times
reach minimum values of ~ 15
sec. and ~ 30 sec., respectively
near a selection of 10 columns.

� ROOT query times continue to
decrease linearly with decreasing
number of columns.

� For a selection of only one
column ROOT is 7 times faster
than Oracle and 15 times faster
than MySQL.

ROOT Data bases access 17

TBitmapIndex: An attempt to
introduce FastBit to ROOT

Kurt Stockinger1, Kesheng Wu1, Rene Brun2,
Philippe Canal3

(1) Berkeley Lab, Berkeley, USA
(2) CERN, Geneva, Switzerland
(3) Fermi Lab, Batavia, USA

See
J.Wu

talk
 at

ROOT
 wor

ksho
p

Rene Brun ROOT Data bases access 18

Bitmap Indices

� Bitmap indices are efficient data structures for
accelerating multi-dimensional queries:
� E.g. pT > 195 AND nTracks < 4 AND muonTight1cm > 12.4

� Supported by most commercial database
management systems and data warehouses

� Optimized for read-only data
�� However, because an efficient index may be a However, because an efficient index may be a

substantial fraction of the data, we think that it substantial fraction of the data, we think that it
is only appropriate for things like event meta is only appropriate for things like event meta
data cataloguesdata catalogues

ROOT Data bases access 19

FastBit: A compressed bitmap indexing technology for
efficient searching of read-only data

http://sdm.lbl.gov/fastbit

LBNL holds the copyright of the FastBit software and a US patent on
the core compression technique used in FastBit. LBNL intends to
seek opportunities to commercialize the searching technology and
the compression technique. However, since the ROOT framework is
essential to high-energy physics experiments funded by US
Department of Energy, which also funded the development of FastBit
and the related compression technique, LBNL has agreed to develop a
license to grant ROOT users free use of the FastBit searching
technology as long as FastBit is only accessed through ROOT
framework. FastBit source code may also be distributed with ROOT
so long as it is only used through ROOT.

Rene Brun ROOT Data bases access 20

Example - Build Index
// open ROOT-file
TFile f("data/root/data.root");
TTree *tree = (TTree*) f.Get("tree");

TBitmapIndex bitmapIndex;
char indexLocation[1024] = “/data/index/";

// build indices for all leaves of a tree
bitmapIndex.BuildIndex (tree, indexLocation);

// build index for two attributes “a1”, “a2” of a tree
bitmapIndex.BuildIndex(tree, "a1", indexLocation);
bitmapIndex.BuildIndex(tree, "a2", indexLocation);

Rene Brun ROOT Data bases access 21

Example - Tree::Draw with Index

// open ROOT-file
TFile f("data/root/data.root");
TTree *tree = (TTree*) f.Get("tree");

TBitmapIndex bitmapIndex;
bitmapIndex.Draw(tree, "a1:a2", "a1 < 200 && a2 > 700");

Rene Brun ROOT Data bases access 22

Experiments With BaBar Data

� Software/Hardware:
� Bitmap Index Software is implemented in C++
� Tests carried out on:

� Linux CentOS
� 2.8 GHz Intel Pentium 4 with 1 GB RAM
� Hardware RAID with SCSI disk

� Data:
� 7.6 million records with ~100 attributes each
� Babar data set:

� Bitmap Indices (FastBit):
� 10 out of ~100 attributes
� 1000 equality-encoded bins
� 100 range-encoded bins

Rene Brun ROOT Data bases access 23

Query Performance -
TTreeFormula vs. Bitmap Indices

1-Dimensional Queries

0.1

1

10

0.00001 0.0001 0.001 0.01 0.1 1

Query box

Ti
m

e
[s

ec
]

Bitmap indices 10X faster than
TTreeFormula

5-Dimensional Queries

0.1

1

10

100

0.00001 0.0001 0.001 0.01 0.1 1

Query box

Ti
m

e
[s

ec
]

10-Dimensional Queries

1

10

100

0.00001 0.0001 0.001 0.01 0.1 1

Query box

Ti
m

e
[s

ec
]

TTreeFormula BMI-EE BMI-RE

Rene Brun ROOT Data bases access 24

Grid Collector Speeds up
Analyses

� Legend
� Selectivity: fraction of events selected for an analysis
� Speedup = ratio of time to read events without GC and with GC
� Speedup = 1: speed of the existing system (without GC)

� Results
� When searching for rare events, say, selecting one event out of 1000 (selectivity =

0.001), using GC is 20 to 50 times faster
� Even using GC to read 1/2 of events, speedup > 1.5

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
selectivity

sp
ee

du
p

Sample 1

Sample 2

Sample 3

1

10

100

1000

0.00001 0.0001 0.001 0.01 0.1 1
selectivity

sp
ee

du
p

Sample 1

Sample 2

Sample 3

less selective Æmore selective

Used
in ST

AR Gr
id Co

llect
or

Rene Brun ROOT Data bases access 25

Data analysis with bitmap indices

Event catalogue
Bitmap index

qu
er
y

Ev
en
t
li
st

Direct use
by PROOF
slaves to
select
events

ROOT Data bases access 26

Some Utilities

Interface with GRID stuff (eg FC)
Grouping many small files

Rene Brun ROOT Data bases access 27

Class TGrid (abstract interface)
//--- General GRID
const char *GridUrl() const
const char *GetGrid() const
const char *GetHost() const
const char *GetUser() const
const char *GetPw() const
const char *GetOptions() const
Int_t GetPort() const

//--- Catalogue Interface
virtual TGridResult *Command(const char *command,

Bool_t interactive = kFALSE,
UInt_t stream = kFALSE)

virtual TGridResult *Query(const char *path, const char *pattern,
const char *conditions,
const char *options)

virtual TGridResult *LocateSites()

virtual TGridResult *ls(const char*ldn ="", Option_t*options ="")
virtual Bool_t cd(const char*ldn ="",Bool_t verbose =kFALSE)
virtual Bool_t mkdir(const char*ldn ="", Option_t*options ="")
virtual Bool_t rmdir(const char*ldn ="", Option_t*options ="")
virtual Bool_t register(const char *lfn , const char *turl , Long_t size,

const char *se, const char *guid)
virtual Bool_t rm(const char*lfn , Option_t*option ="")

//--- Job Submission Interface
virtual TGridJob *Submit(const char *jdl)
virtual TGridJDL *GetJDLGenerator()

//--- Load desired plugin and setup conection to GRID
static TGrid *Connect(const char *grid, const char *uid,

const char *pw, const char *options)

Rene Brun ROOT Data bases access 28

Access to File Catalogues

eg Alien FC

Same st
yle int

erface
could b

e imple
mented

for

Other G
RID Fil

e Catal
ogues

Rene Brun ROOT Data bases access 29

// Connect
TGrid alien = TGrid::Connect(“alien://”);

// Query
TGridResult *res =alien.Query
(“/alice/cern.ch/user/p/peters/analysis/miniesd/”,

”*.root“);
// List of files
TList *listf = res->GetFileInfoList();

// Create chain
TChain chain(“Events", “session");
Chain.AddFileInfoList(listf);

// Start PROOF
TProof proof(“remote”);

// Process your query
Chain.Process(“selector.C”);

TGrid example with Alien

Rene Brun ROOT Data bases access 30

Replica of a DB subset

local TZipFile

remote TZipFile

T0

T1

http,
 xroo

td, c
astor

, dca
che..

Rene Brun ROOT Data bases access 31

TArchiveFile and TZIPFile
� TArchiveFile is an abstract class that describes an archive file containing

multiple sub-files, like a ZIP or TAR archive.
� The TZIPFile class describes a ZIP archive file containing multiple ROOT

sub-files. Notice that the ROOT files should not be compressed when being
added to the ZIP file, since ROOT files are normally already compressed.
To create the file multi.zip do:

� The ROOT files in an archive can be simply accessed like this:

� A TBrowser and TChain interface will follow shortly.

zip –n root multi file1.root file2.root

TFile *f = TFile::Open("multi.zip#file2.root")
or

TFile *f = TFile::Open("root://mymachine/multi.zip#2")

Rene Brun ROOT Data bases access 32

TFileMerger
� This new class allows for easy copying of two or more files using

the many TFile plugins (i.e. it can copy from Castor to dCache, or
from xrootd to Chirp, etc.).

�

� The AddFile() and Merge() use the Cp() to copy the file locally
before making the merge, and if the output file is remote the
merged file will be copied back to the remote destination.

TFileMerger m;
m->Cp("srcUrl", "destUrl");
or
m->AddFile("url1");
m->AddFile("url2");
m->Merge();

Rene Brun ROOT Data bases access 33

New TFile Feature

� Support for opening files in raw mode when the file url
contains the option string "filetype=raw", like
"anyfile.tgz?filetype=raw".

� This allows TFile and its many remote access plugins to
be used to open and read any file.

� This is used by the TFileMerger::Cp() method to copy
any file from and to Grid storage elements (e.g. from
Castor to dCache, from xrootd to a local file, and all
possible permutations).

