

Enabling Grids for E-sciencE

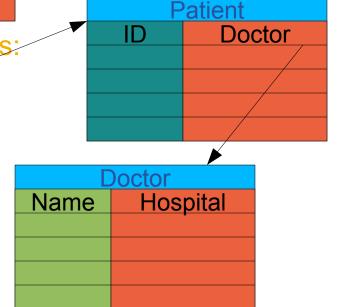
AMGA Metadata Server - Metadata Services in gLite

(+ ARDA DB Deployment Plans with Experiments)

Birger Koblitz NA4 3D Workshop, Oct 17th 2005, CERN

www.eu-egee.org

Grid Metadata Services


- Metadata services on the Grid comes in 2 flavours:
 - File metadata

Simple, generalized rel. DB services:

Images				
GUID	Date	Patient		

Example from EGEE-BioMed community

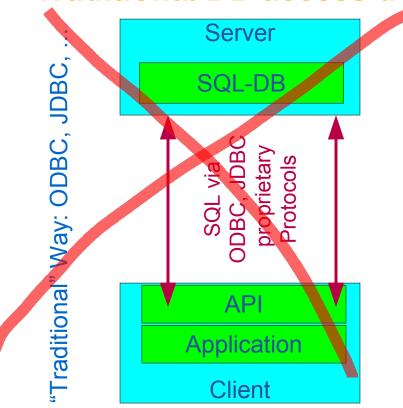
AMGA is the Metadata Catalogue for gLite:

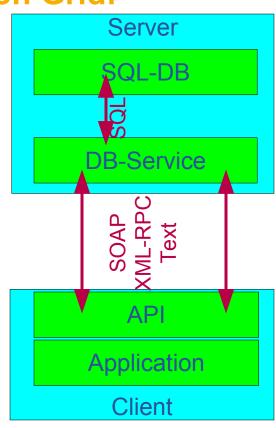
- AMGA started out as ARDA's tool to investigate metadata access on the GRID
- AMGA will be in gLite release 1.5
- AMGA works in 2 modes:
 - Side-by-Side a File Catalogue (LFC): File Metadata
 - Standalone: General relational data on Grid
- AMGA has 2 front ends:
 - SOAP with PTF standardised interface
 - Text-based TCP streaming protocol (proprietary, documented)
- AMGA has ideas from many people: UK GridPP Metadata Group, GAG (HEP), gLite DM-team, PTF, LHCb

http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/

A Common Interface

- AMGA implements a common interface designed in close collaboration of gLite and ARDA teams
 (P. Kunszt, R. Rocha, N. Santos, B.K.)
- Again: many ideas from UK GridPP Metadata group, LHCb (Bookkeeping, GANGA), GAG, PTF...
- Endorsed by PTF
- Design Ideas:
 - Versatility: Usable for HEP as well as Biomed (security)
 - Modular: Interface for Entry manipulation, schemes, security
 - Possible Add-on to File Catalogue
 - Allows stateless & statefull implementations
 - Few requirements on back end, can be §
- Description of WSDL at https://edms.cern.ch/document/573725

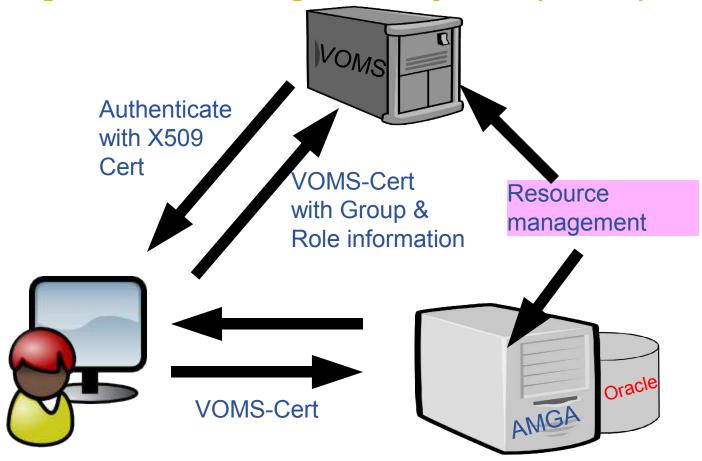



DB Access on the Grid

Traditional DB access doesn't work on Grid:

- +Performance
- +Simple Implementation
- Security, Monitoring
- Authentication, resource management??

'Service": LFC, AMI, RefDB, ...



- +Lightweight Client
- +Security: GSI, x509
- Performance
- Implementation: State

Access Control on the Grid

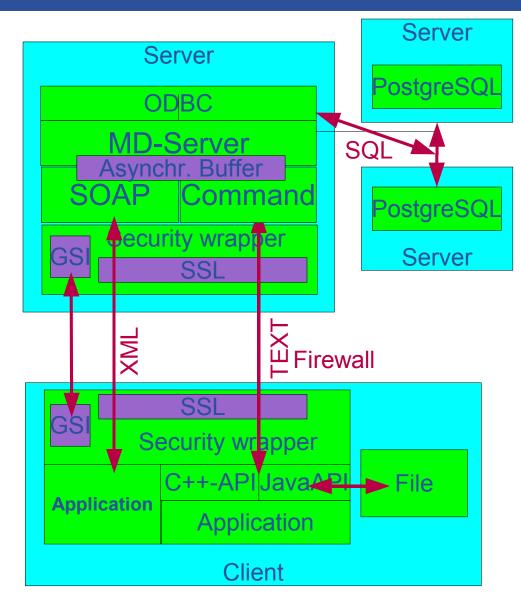
 Access control to resources on the Grid is done via a Virtual Organization Management System (VOMS):

Security Concepts

- Security very important for BioMed, less for HEP
 Security ← Speed
- Standalone catalogue has:
 - ACLs for dirs and Unix permissions dirs/entries
 - Built-in group-management as in AFS
- AMGA + LFC back end:
 - Posix ACLs + Unix permissions for dirs/entries (ACLs currently not checked: slow!)
 - Users/groups via VOMS
- Currently no security on attribute basis
 - AMGA allows to create views: Safer, faster, similar to RDBMS

Security tested by GILDA team for standalone catalogue, liked built-in group management & ACLs, but we need feedback from BioMed!

AMGA in preproduction within several projects:


- LHCb and ATLAS: GANGA
- LHCb Logging and Bookkeeping
- EGEE BioMed applications
 - Highly secure access to medical images metadata
- Generic applications:
 - Metadata for EGEE-GILDA media library
 - UNOSAT project: Used side-by side with LFC catalogue for filemetadata of satellite images

AMGA Implementation

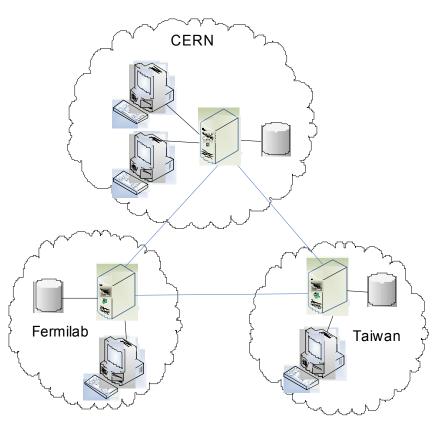
AMGA Implementation:

- SOAP and Text frontends
- Supports single calls, sessions & connections
- SSL security with grid certs
- PostgreSQL, Oracle,
 MySQL, SQLite backends
- Works alongside LFC
- C++, Java, Python clients
- See & download at http://project-arda-dev.web.cern.ch/ project-arda-dev/metadata/

Ongoing Work: Replication

PhD (N. Santos) focuses on replication of AMGA at application level:

Goal


 Fault-tolerance, scalability, reliability with minimum administration overhead

Ideas

- Replication.
 - Partial, only collections that are needed locally.
 - Master-slave asynchronous
- P2P techniques for managing dynamic network of nodes
- Discovery and location of metadata collections using P2P techniques

Current status:

- Initial work on AMGA
- Prototype using PostgreSQL replication working

ARDA Database Deployment Plans and Replication Test Plans

ARDA Deployment Plans

Analysis Prototypes developed by HEP-Experiments & ARDA currently foresee:

LHCb:

- Logging & Bookkeeping DB replicated >=2x
 AMGA + DB: Oracle
 Could use Oracle streams or AMGA native replication
- GANGA analysis front-end plans to deploy AMGA+Postgres back-end once per Tier1
 Replication scheme unclear, data not persistent

ATLAS:

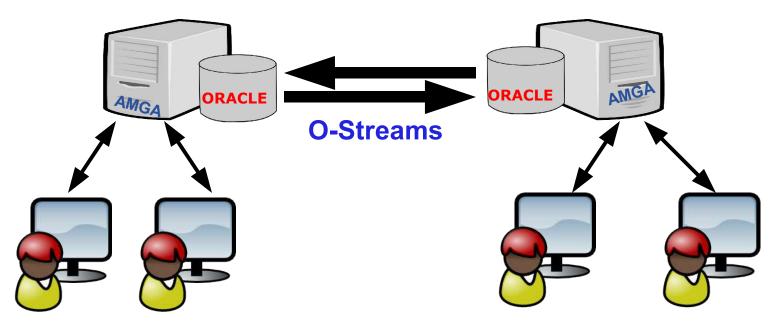
 GANGA analysis front-end using AMGA, DB back-end unknown (currently PostgreSQL)

CMS:

 Central dashboard DB at CERN for monitoring data aggregation Currently PostgreSQL, PHP-access

Deployment Plan Continued

 Generic AMGA for BioMed and other communities will be deployed by EGEE deployment teams


Rough overview with numbers:

	Replication Scheme	Update Rate	Size
GANGA (LHCb)	1DB per Tier 1	users x jobs	
GANGA(ATLAS)	?	users x jobs	
Bookkeeping(LHCb	1+1 at Cern	1 x job	15 GB/year
Dashboard(CMS)	1+1 at Cern	10 x jobs: 1/s	30 GB/year

Testing Plans

- ARDA would like to test Oracle streams replication in simple setup at CERN for AMGA:
 - Test replication functionality, in particular to replicate schema changes
 - Understand performance requirements

Verify Oracle Streams as replication solution for AMGA

- With AMGA gLite will get generic metadata service
- Implements most of PTF Metadata Interface
- AMGA has seen heavy performance/stability testing
- AMGA currently evaluated / in preproduction for LHCb(GANGA, bookkeeping), BioMed, UNOSAT, ESR

- ARDA would like to test AMGA replication via Oracle streams
- Replication of AMGA at application level planned

Basic Concepts

Entry

Has key (unique string) and attributes

Attribute

- Has name (string),
 type (depends on backend, support for basic types)
- Belongs to schema
- An entry in a schema has a value for each attribute

Schema (in AMGA: directory)

- Has name and list of attributes
- In AMGA: Every entry belongs to one schema, schemas are hierarchical: /collaboration1/jobs

Query

SELECT ... WHERE ... clause in SQL-like query language

Example command line session with LFC back end:

mdclient -p8822 lxb0709	Query> addentries /grid/arda/lfn-0.dat /grid/arda/lfn-
Connected to Ixb0709:8822	1.dat
ARDA Metadata Server 0.9.4	Query> listentries /grid//arda
Query> dir /	>> Ifn-0.dat
>> grid	>> Ifn-1.dat
>> collection	Query> addentry /grid/arda/lfn-4.dat i 2 t 'A test'
Query> dir /grid/arda	Query> listentries /grid/arda
>> Ifn-0.dat	>> Ifn-0.dat
[rest of LFC entries]	>> Ifn-1.dat
Query> schema_create /grid/arda i int t text	>> Ifn-2.dat
Query> listattr /grid/arda	Query> addattr /grid/arda f float
>> i	Query> find /grid/arda/* 'i=2'
>> int	>> Ifn-2.dat
>> t	Query> addentries /grid/dteam/arda/bla.dat
>> text	Error 1: File or directory not found: /grid/arda/bla.dat
	Query>