CERN Physics Database Services and Plans Maria Girone, CERN-IT

physics-database.support@cern.ch

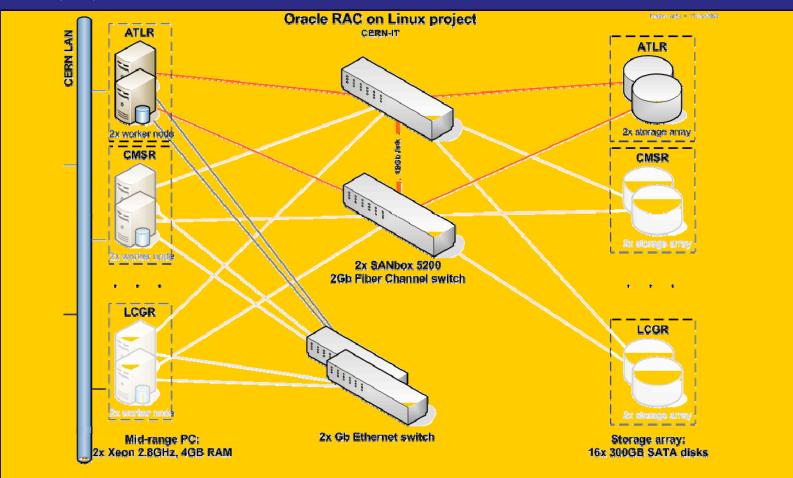
- Service Structure and Architecture
 - Validation and Production services
- Service consolidation plans
- Deployment model for 2006
- Resource Constraints
- Conclusions

Database Services for Physics

Mandate

- Coordination of the deployment of physics database applications
- Administration of the physics databases in co-operation with the experiments or grid deployment teams
- Consultancy for application design, development and tuning
- Involvement in 3D project and LCG Service Challenges
- Provide database services for LHC and non-LHC experiments
 - applications related to book keeping, file transfer, physics production processing, on-line integration, detector construction and calibration

Service Levels


- Development Service (run by IT-DES)
 - Code development, no large data volumes, limited number of concurrent connections
 - Once stable, the application code and schema move to validation
- Validation Service (for key apps)
 - Sufficient resources for larger tests and optimisation
 - Allocated together with DBA resources consultancy
 - Needs to be planned in advance
 - Limited time slots of about 3 weeks
- Production Service
 - Full production quality service, including backup, monitoring services, on call intervention procedures
 - Monitoring to detect new resource consuming applications or changes in access patterns
- OS level support provided by IT-FIO

Database Deployment Workshop

Maria Girone

Service Architecture

 The Physics Database Production and Validation services are mainly deployed on 2-node RAC/Linux, in failover mode

Validation Service

- Based on two 2-node RACs
- Reviewed about 10 key applications in about 4 months
- It requires a significant effort from both sides, but
 - Sizeable performance improvements
 - Better understanding of resource requirements achieved
 - In some cases, a reference workload is still missing
 - Positive feedback from the experiments
- Adding this service level has been a good idea!
 - Reduces the risks in production deployment
 - DBAs have a better knowledge of the key applications

Validation experience

- Validation/Production levels is an iterative process for new application software versions
- Next step: use the results as a part of Service Level Agreements
- We capture snapshots of the query mix and resource consumption of a given application
- Can be compared later to similar snapshots at production level
 - Useful for identifying changes in access patter or problems

Production Service

- End of 2005: phasing out of the old 2-node 9i Sun cluster (PDB) and most of individual disk servers
- Many new applications/instances have been requested in the last 6 months, many in the pipeline
 - Deploying them on RAC, after Development/Validation cycle
 - Flexible architecture to cope with increasing demand
 - Redundant architecture for high availability
- We are currently migrating all the LHC experiments and grid applications to RAC
 - Cooperation needed for validation on the new system

RAC is Production now!

- Two RACs for the Validation service
- Three LHC experiments (ATLAS, CMS and LHCb) dedicated RACs
- One RAC for LCG applications (FTS, LFC, etc)
- One RAC for the ATLAS online tests (so far, with time limited allocation)
- One RAC for the service development
- We are happy to collaborate with LCG sites who are interested in deploying RACs in their services, in the context of the 3D project

Applications moved to RAC already

ATLAS

- ATLAS_COOL, ATLAS_Event Tags, ATLAS_da, ATLAS_TO
- ATLAS_ProdSys, ATLAS_Muon Cert, ATLAS_Muon (migrated from PDB)

CMS

- CMS_transfermgmt_SC, CMS_transfermgmt_TEST, CMS_PXL and CMS_HCL
- cms_muon_endcap (migrated from PDB)

LHCb

- LHCb_COOL
- LHCb_bookkeeping, LHCb_ecal, LHCb_richhpd (migrated from PDB)
- The migration from the PDB cluster is half way through

Current Requests...

- Consolidation of the Production service in the RAC architecture
- Experiment dedicated Validation/Test services
- Development service on ORACLE 10g Release 2
- **3D** service
- Online Database test at the computer center for ATLAS on RAC
- Possible consolidation of the service for COMPASS into RAC with about 10 TB of data, including 2006 running and full data re-processing
 - valuable experience in handling large volumes data

... And Issues

- Database Structure Conventions: naming conventions, roles, profiles for achieving better organization and smoother transitions across service levels (see M. Anjo talk)
- Storage: studying different scenarios for the storage layout in order to increase the system I/O performance and make best use of the available capacity (see L. Canali talk)
- Backups: need to have scalable and regularly validated recovery procedures from backups with minimal recovery latency (see J. Wojcieszuk talk)
- Security: how to get securely connected to a database in a grid environment (see K. Zajaczkowski talk)
- Monitoring: provide database and application level monitoring information to be used by both developers and DBAs (see R. Chytracek talk)
- High Availability: Planned interventions for applying OS and ORACLE release upgrades and security patches are our main reason of service downtime. This results in a significant impact at application level (see D. Duellmann talk)

Database Deployment Workshop

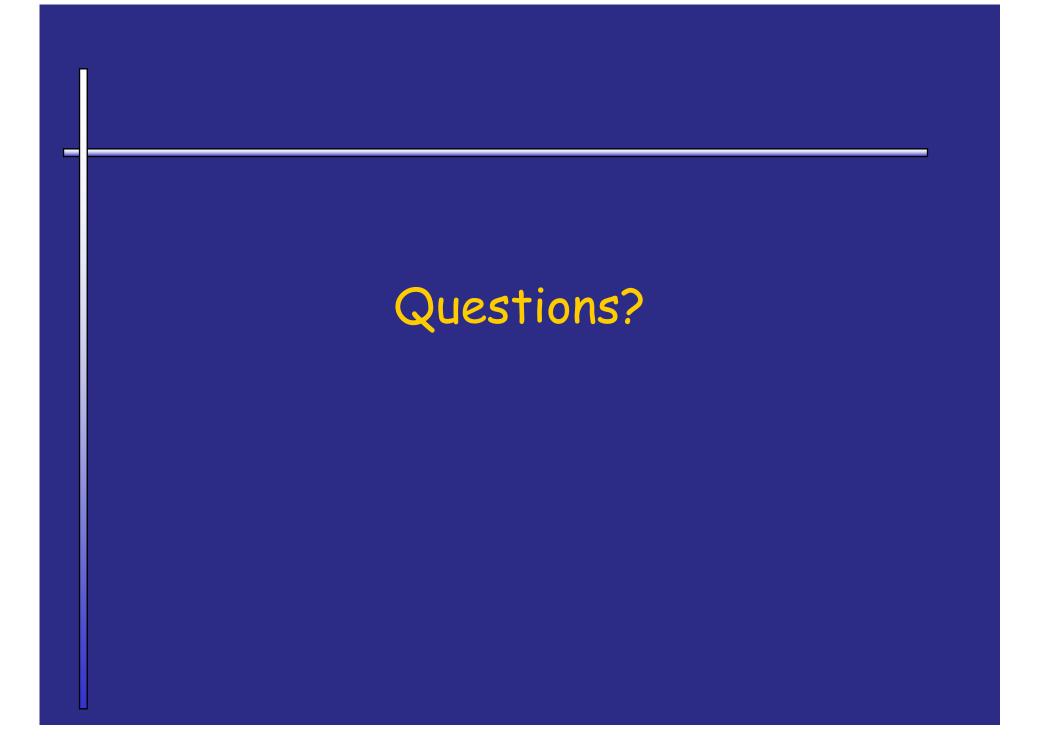
Maria Girone

Hardware evolution for 2006

• Ramping up of the hardware resources in 2006-2008

Current State							
ALICE	ATLAS	CMS	LHCb	Grid	3D	Non-LHC	Validation
-	2-node offline	2-node	2-node	2-node	-	-	2x2-node
	2-node online test						
Proposed structure in 2006							
2-node	n-node or nx2-node	n-node or nx2-node	n-node or nx2-node	n-node or nx2-node	2-node	2-node (PDB replacement)	
	2-node valid/test	2-node valid/test	2-node valid/test	2-node pilot		Compass??	
	Online?						

Online Databases


- Several experiments foresee their online databases to be located at the experiment sites
- Currently we offer database services only in the computer center
 - Resource constraints don't allow us to take up this significant additional task
- We would like to avoid possible software and hardware divergence and help the experiments to setup their own online services on a best effort basis
 - Keep the experiment informed about hardware choices
 - Database s/w kits and consultancy are provided also for online applications
 - We can help in organizing OCP training for experiments DBAs

Resource Constraints

- Still very busy period
 - Many experiment applications still ramping up
 - Consolidation of DB service for physics still ongoing
- Can not pick up any larger additional tasks at the moment
- Recent hire:
 - Expert Oracle DBA with significant application optimisation experience
- Another way of freeing resources is retiring services which are not used anymore

Conclusions

- In the last 6 months we made a big step towards a flexible infrastructure for LHC
- New validation service introduced for the key applications
 - Better understanding of resource requirements and applications deployed. Needs considerable effort on both sides
- RAC/Linux is now in production
 - The consolidation phase is still going on. Additional hardware resources expected to be available from November 2005
- Can now extend the database service but need some planning
- We think we are progressing well to phase the LHC start-up \odot

