
9/28/2005 Philippe Canal, ROOT Workshop
2005

1

TTree / SQL

Philippe Canal (FNAL)
2005 Root Workshop

9/28/2005 Philippe Canal, ROOT Workshop 2005 2

New RDBMS interface: Goals
Access any RDBMS tables from TTree::Draw

Create a TTree in split mode
• creating a RDBMS table and filling it.

The table can be processed by SQL directly.
The interface uses the normal I/O engine
• including support for Automatic Schema Evolution.

Convergence between RAL interface and the TSQL
interfaces

9/28/2005 Philippe Canal, ROOT Workshop 2005 3

File types & Access in 5.04/xx

Local
File

X.xml

RFIO Chirp

CastorDcacheLocal
File

X.root

http rootd/xrootd
Oracle

SapDb

PgSQL

MySQL

TFile
TKey/TTree

TStreamerInfo

user

TSQLServer
TSQLRow

TSQLResult

TTreeSQL

9/28/2005 Philippe Canal, ROOT Workshop 2005 4

TTree with SQL database back-end
Uploaded in CVS repository of first version of TTreeSQL
• support the TTree containing branches created using a leaf list

(eg. hsimple.C).

Add an interface to read the proper TTree object
depending on the backend
• Something like TTree::Open using the Plugin Manager

Extend TTreeSQL to support TBranchElement
Implement proper schema evolution support
• The main design problem is how to save/retrieve the

TProcessID/TStreamerInfo.
• One possibility is to use the same mechanism currently in use in

TXMLFile

ntuple->Branch("main",&mytest,"px/D:py/F:pz:random:i/I:c/B");
ntuple->Branch("string",(void*)str,"str/C");

9/28/2005 Philippe Canal, ROOT Workshop 2005 5

TTreeSQL Syntax
Currently:
• ROOT:

• MySQL:

Coming up:

•

TFile *file = new TFile("simple.root","RECREATE");
TTree *tree; file->GetObject(“ntuple”,tree);

TSQLServer*dbserver = TSQLServer::Connect("mysql://…”,db,user,passwd);
TTree *tree = new TTreeSQL(dbserver,"rootDev","ntuple");

TTree *tree = TTree::Open(“root:/simple.root/ntuple”);

TTree *tree = TTree::Open(“mysql://host../rootDev/ntuple”);

9/28/2005 Philippe Canal, ROOT Workshop 2005 6

Support for TBranchElement

Will add the creation of auxiliary tables
• table of TStreamerInfos

Will add support for ‘blob’ data field to
support unsplit object.
Will need support for ‘collection’
• either by using additional ‘linked’ tables
• either by using ‘blob’ data field

9/28/2005 Philippe Canal, ROOT Workshop 2005 7

TTreeSQL Optimization

On a simple test with a local MySQL
database:
• Reading is 5x slower than with ROOT I/O
• Writing is functional but requires significant

optimization of the code.
Current implementation of the SQL
communication (text oriented) could be
greatly improved.
• Could use some expertise in MySQL and

odbc (to reinvigorate RDBC)

9/28/2005 Philippe Canal, ROOT Workshop
2005

8

TTree Draw

Philippe Canal (FNAL)
2005 Root Workshop

9/28/2005 Philippe Canal, ROOT Workshop 2005 9

TTree::Scan extensions

The output of TTree::Scan can now be customized via the 3rd

argument
Column size:
• The default is 9 characters
• It can be modified with “colsize=ss” where ss is the new size

Floating point precision:
• The default is 9 digits
• It can be modified with “precision=p”

Individual columns:
• The size of each columns can be specified via “col=xxx”
• Where 'xxx' is colon (:) delimited list of printing format for each

column if no format is specified for a column, the default is
Array elements
• The number of array values printed per events can be restricted

using “lenmax=dd” where ‘dd’ is the number of element printed

tree->Scan("a:b:c","","colsize=30 precision=3 col=::20.10");

9/28/2005 Philippe Canal, ROOT Workshop 2005 10

Looking at the Tree

myTree->Scan("fEvtHdr.fDate:fNtrack:fPx:fPy","",
"colsize=13 precision=3 col=13:7::15.10");

**
* Row * Instance * fEvtHdr.fDate * fNtrack * fPx * fPy *
**
* 0 * 0 * 960312 * 594 * 2.07 * 1.459911346 *
* 0 * 1 * 960312 * 594 * 0.903 * -0.4093382061 *
* 0 * 2 * 960312 * 594 * 0.696 * 0.3913401663 *
* 0 * 3 * 960312 * 594 * -0.638 * 1.244356871 *
* 0 * 4 * 960312 * 594 * -0.556 * -0.7361358404 *
* 0 * 5 * 960312 * 594 * -1.57 * -0.3049036264 *
* 0 * 6 * 960312 * 594 * 0.0425 * -1.006743073 *
* 0 * 7 * 960312 * 594 * -0.6 * -1.895804524 *

9/28/2005 Philippe Canal, ROOT Workshop 2005 11

TTree::Draw extensions

@ notation

Sum$
• Return the sum of the value of the elements of the

formula given as a parameter.
•

Allow more cases of branch names
• The TFormula parsing was improved to allow the

branch names to contain class template names (aka
myclass<int,double>)

tree->Draw("event.fTracks.size()"); // Size of the tracks
tree->Draw("event.@fTracks.size()"); // Number of tracks

tree->Draw("Sum$(formula)/Length$(formula)");
// Histo of the mean of ‘formula’ in each event

9/28/2005 Philippe Canal, ROOT Workshop 2005 12

TTree::Draw extensions
TTree::Draw can call any function or member function which
takes numerical arguments:

TTree::Draw can execute scripts in a context where the name
of the branches can be used as a C++ variable.

tree->Draw(“TMath::Abs(event.fH.GetMean())”);

// File hsimple.C
double hsimple()
{

return px
};

tree->Draw(“hsimple.C”);

// File track.C
double track()
{

int ntrack = event->GetNTracks();
if (ntrack>2) {
return fTracks.fPy[2];

}
return 0;

};

tree->Draw(“track.C”);

9/28/2005 Philippe Canal, ROOT Workshop 2005 13

TTree::MakeProxy
Enables tree->Draw(“hsimple.C”);

Generates a skeleton analysis class inheriting from TSelector
and using TBranchProxy.
• TBranchProxy is the base class of a hierarchy implementing an

indirect access to the content of the branches of a TTree.

Main Features:
• on-demand loading of branches
• ability to use the 'branchname' as if it was a data member
• protection against array out-of-bound
• ability to use the branch data as an object (when the user code is

available)
• Gives access to all the functionality of TSelector

Example in $ROOTSYS/tutorials:
h1analysisProxy.cxx , h1analysProxy.h and h1analysisProxyCut.C

9/28/2005 Philippe Canal, ROOT Workshop 2005 14

TFormula Optimizations

New implementation of the executor part of
TFormula
• Combines or replaces multiple operations by a

single indirect function call.
• Pre-calculate constant expressions
• minimizes the size of the existing switch

This result in a significant speed-up of the
execution
• Especially noticeable if used for minimization

9/28/2005 Philippe Canal, ROOT Workshop 2005 15

Browsing extension

Can now
Browse:
• Split objects
• Unsplit objects
• Collections

And can now
see
• Simple member

functions
• Transient members
• Persistent members

9/28/2005 Philippe Canal, ROOT Workshop 2005 16

Main focus: References
• Will implement a TVirtualRefProxy providing a generic

interface for reference objects (including GetObject,
GetObjectType). This will be used by TTree::Draw to
be able to dereference TRefs and pool::ref

MakeProxy
• Add support for STL containers
• Add support for CINT-interpretation

I/O
• Variable size array of ‘Foreign’ Object:

TTree
• Indexing using bitmap algorithm (TBitMapIndex) from

LBL (See John Wu’s talk)

Obj *fArr; //[n]

Upcoming Features

