
28 - 30 Sept 2005 6th Intl. ROOT Workshop 1

New Infrastructure Features
Since ROOT 2004

Fons Rademakers

28 - 30 Sept 2005 6th Intl. ROOT Workshop 2

Overview

New infrastructure features
Miscellaneous
Plans

28 - 30 Sept 2005 6th Intl. ROOT Workshop 3

New Splash Screen

28 - 30 Sept 2005 6th Intl. ROOT Workshop 4

TArchiveFile and TZIPFile
TArchiveFile is an abstract class that describes an archive file
containing multiple sub-files, like a ZIP or TAR archive.
The TZIPFile class describes a ZIP archive file containing multiple
ROOT sub-files. Notice that the ROOT files should not be
compressed when being added to the ZIP file, since ROOT files are
normally already compressed. To create the file multi.zip do:

The ROOT files in an archive can be simply accessed like this:

A TBrowser and TChain interface will follow shortly.

zip –n root multi file1.root file2.root

TFile *f = TFile::Open("multi.zip#file2.root")
or

TFile *f = TFile::Open("root://pcsalo/multi.zip#2")

28 - 30 Sept 2005 6th Intl. ROOT Workshop 5

Auto Loading of Plugins
Support for auto-loading libraries when an unknown
class is being referenced.
The auto-loading mechanism reads the files
$ROOTSYS/etc/system.rootmap, ~/.rootmap and
./.rootmap (via TEnv) to try to map the unknown class
to a library.
If the library is found it, and the libraries on which it
depends, are loaded.
The rootmap files are created with the rlibmap tool
when executing "make map".
Example: in an interactive session, one can do directly

without having to do
TLorentzVector v;

gSystem->Load(“libPhysics”);

28 - 30 Sept 2005 6th Intl. ROOT Workshop 6

SLAC’s New File Server - xrootd

The file server xrootd (eXtended ROOT daemon)
has been developed by Andy Hanushevsky of
SLAC.
The server exploits a multithreaded architecture
to provide high-performance file based access,
focusing on scalability and fault tolerance. The
server is being extensively used by the BaBar
collaboration. For more see Andy’s talk on
Thursday afternoon.
The xrootd file server will in the near future
replace the current daemon rootd.

28 - 30 Sept 2005 6th Intl. ROOT Workshop 7

The New xrootd Client - TXNetFile

The new client class TXNetFile implements
the xrootd protocol and is provided to
open a file via the xrootd daemon.
TXNetFile can detect when it talks to on
old rootd daemon and return a TNetFile.
To open a file via xrootd, just use the
standard static method TFile::Open() as
for opening via rootd.

28 - 30 Sept 2005 6th Intl. ROOT Workshop 8

Many Improvements in TThread

Added thread safe TThread::Printf(), TThread::Info(),
Warning() and Error() methods. These last three behave
like the global TError methods, i.e. they need as location
the full “class::method”.
TThread::Join() when called in the main thread does not
lock anymore the program but spawns a JoinHelper
thread while in the meanwhile the main thread keeps
processing system events.
General cleanup in the TThread class to streamline the
under laying POSIX pthread and Win32 thread drivers.
TThread classes are now also available on win32 (NT4.0
and above), with some limitations though.

28 - 30 Sept 2005 6th Intl. ROOT Workshop 9

XML Parser Interface
TXMLParser is the base class
TSAXParser parses XML files using the SAX
(Simple API for XML) interface. SAX is an event
driven parser.
TDOMParser parses XML files using the DOM
(Document Object Model) interface. DOM is a
platform and language-neutral interface that will
allow programs and scripts to dynamically
access and update the content, structure and
style of documents.
The SAX and DOM parsers are internally using
libxml2.

28 - 30 Sept 2005 6th Intl. ROOT Workshop 10

TImageDump
Many extensions to the libAfterImage library to support line, marker
and (filled) polygon drawing. Accessible via TASImage.
The new class TImageDump uses TASImage and derives from
TVirtualPS to allow the saving of canvases in gif, jpg, png, tiff, etc.,
image formats in batch mode:

Or to display any gif, jpg, png, tiff in a canvas, do:

$ root –b
root [0] .x hsimple.C
root [1] c1->Print("c1.gif");

TCanvas *c1;
TImageDump *imgdump = new TImageDump("test.png");
c1->Paint();
imgdump->Close();

28 - 30 Sept 2005 6th Intl. ROOT Workshop 11

TMacro

This class allows for storing a C++ macro
in a ROOT file.
In addition to being stored in a ROOT file
a TMacro can be executed, edited, etc.

TMacro m("Peaks.C"); //macro m with name "Peaks" is created
//from file Peaks.C

m.Exec(); //macro executed with default arguments
m.Exec("4"); //macro executed with argument
m.SaveSource("newPeaks.C");
TFile f("mymacros.root","recreate");
m.Write(); //macro saved to file with name "Peaks"

28 - 30 Sept 2005 6th Intl. ROOT Workshop 12

TFileMerger
This new class allows for easy copying of two or more
files using the many TFile plugins (i.e. it can copy from
Castor to dCache, or from xrootd to Chirp, etc.).

The AddFile() and Merge() use the Cp() to copy the file
locally before making the merge, and if the output file is
remote the merged file will be copied back to the
remote destination.

TFileMerger m;
m->Cp("srcUrl", "destUrl");
or
m->AddFile("url1");
m->AddFile("url2");
m->Merge();

28 - 30 Sept 2005 6th Intl. ROOT Workshop 13

New TFile Feature

Support for opening files in raw mode when the
file url contains the option string "filetype=raw",
like "anyfile.tgz?filetype=raw".
This allows TFile and its many remote access
plugins to be used to open and read any file.
This is used by the TFileMerger::Cp() method to
copy any file from and to Grid storage elements
(e.g. from Castor to dCache, from xrootd to a
local file, and all possible permutations).

28 - 30 Sept 2005 6th Intl. ROOT Workshop 14

Miscellaneous

gcc 4.0.x is supported
MacOS X Tiger on PowerPC and on Intel
Improved rpm and debian packaging
scripts
Coding style rules checked nightly:

http://root.cern.ch/root/nightly/codecheck/codecheck.html

Should we move to subversion?
History tracking of moved files/directories
Better authentication for multiple writers

28 - 30 Sept 2005 6th Intl. ROOT Workshop 15

Plans

28 - 30 Sept 2005 6th Intl. ROOT Workshop 16

Current ROOT Plugin Manager

Plugin is simple shared library
No special tokens, functions, etc.

Plugin is registered in [system].rootrc (i.e.
plugin cache)

Plugin factory via CINT call of ctor as described
in rootrc (need dictionary of class).
Class location and plugin dependencies recorded
in [system].rootmap

Plugin.TFile: ^rfio: TRFIOFile RFIO “TRFIOFile(const char*,Option_t*,const char*,Int_t)”

Library.TMinuit: libMinuit.so libGraf.so libHist.so libMatrix.so

28 - 30 Sept 2005 6th Intl. ROOT Workshop 17

Using a ROOT Plugin

In the code the RFIO file plugin is loaded
and an TRFIOFile object is created using:

// name = “rfio:/cern.ch/user/r/rdm/bla.root”

TPluginHandler *h = gROOT->GetPluginManager()->FindHandler(“TFile”, name);

if (h && h->LoadPlugin() != -1)

file = (TFile*) h->ExecPlugin(4, name, option, ftitle, compress);

28 - 30 Sept 2005 6th Intl. ROOT Workshop 18

Missing Features

ROOT plugins are not self describing
The rootrc description cannot be obtained or
recovered from plugin

Manual plugin cache management
No plugin load path override via shell
variable

28 - 30 Sept 2005 6th Intl. ROOT Workshop 19

Make Plugins Self Describing

Make plugins self describing via a simple
macro to be added to the plugin source

ROOT_PLUGIN("1.1", "TSQLServer", "^oracle:", "TOracleServer", "Oracle", \
"TOracleServer(const char*,const char*,const char*)", \
"This plugin provides access to Oracle");

28 - 30 Sept 2005 6th Intl. ROOT Workshop 20

Automatic
Plugin Cache Generation

Using the new “rlibconfig” utility the
plugin cache will be generated (like
ldconfig for Linux shared libs)
Uses as plugin search path the
“ROOT_PLUGIN_PATH” shell variable or
by default the “DynamicPath” as specified
in the “.rootrc” files
The cache can be generated with absolute
path names so we can run without
ROOT_PLUGIN_PATH

28 - 30 Sept 2005 6th Intl. ROOT Workshop 21

Using PCRE for Reg Exp’s

We are going to introduce a new class
TPRegexp which uses the Perl Compatible
Regular Expressions library.
Well know, rich, regular expression
syntax.
Will be interfaced to TString and other
class and methods now using TRegexp.
TRegexp will of course stay for backward
compatibility.

