
ROOT Users Workshop 28-30 September 2005

Ilka Antcheva

GUI Status and DevelopmentGUI Status and Development

2Ilka Antcheva ROOT Users Workshop 28-30 September 2005

OverviewOverview

• Status

• GUI Classes

• Graphics Editor

• Style Manager

• GUI Builder

• Next Steps

GUI Classes

Feb-04 Jun-04 Dec-04 Sep-05

GUI Builder

Jul-05

Style ManagerGraphics Editor

Dockable Frames MDI

3Ilka Antcheva ROOT Users Workshop 28-30 September 2005

Status (1)Status (1)

• Cross-platform GUIs – consistent look everywhere

• All machine dependent low graphics calls abstracted via TVirtualX
• X11

• Win32GDK - solved problems with
not thread safe gdk environment

• Qt layer - standard ROOT

“plug-in” shared library, allows

to be turned on/off at run time

with no changes of the user’s code

• The benefit of applications running on different platforms is
obvious - it increases the program’s robustness, makes their
maintenance easier and improves the reusability of the code. No
need to implement specific code for each platform.

4Ilka Antcheva ROOT Users Workshop 28-30 September 2005

Status (2)Status (2)

ROOT and Qt (see the talk about Qt & ROOT by Valeri Fine)
• Qt controls the event loop via

QApplication::exec()

• TQtWidget class provides the
embedded ROOT canvas

• ROOT controls the event loop via
TApplication::Run()

• Transformed QEvent into Event_t
structure allows event piping

5Ilka Antcheva ROOT Users Workshop 28-30 September 2005

GUI Classes (1)GUI Classes (1)

• TGDockableFrame widget - allows the undocking/docking of
menus, tool or status bars, or the collapsing of these bars.

• MDI (Multiple Document
Interface) widgets

6Ilka Antcheva ROOT Users Workshop 28-30 September 2005

GUI Classes (2)GUI Classes (2)

• Cleanup methods

• ‘Pseudo-windows' concept allows
to draw & scroll > 10 000 items
TGListView

TGListBox

TGListTree

TGComboBox

TGCompositeFrame *fr = new TGCompositeFrame(this, 80, 20, kHorizontalFrame);

fr->AddFrame(new TGLabel(fr, "Size:“),

new TGLayoutHints(kLHintsLeft | kLHintsCenterY, 3, 0, 1, 1));

// all objects (frames and layout hints) must be unique
. . .

fr->Cleanup();

7Ilka Antcheva ROOT Users Workshop 28-30 September 2005

GUI Classes (3)GUI Classes (3)

TGListTree
• checkboxes on the

tree nodes turn
on/off pieces of the
tree hierarchy

8Ilka Antcheva ROOT Users Workshop 28-30 September 2005

GUI Classes (4)GUI Classes (4)

• Canvas interface
• Menus - restructured to

better follow standard
conventions; give access
to new developed GUIs.

• Tool bar is dockable and
provides shortcuts for
menu’s and buttons for
primitive drawing

• Editor frame – provides
GUIs for objects drawn
in the canvas window

Editor Frame

Menu Bar
Toolbar

Status bar

9Ilka Antcheva ROOT Users Workshop 28-30 September 2005

GUI Classes (5)GUI Classes (5)
• SaveAs file dialog gives a

choice for automatically
overwriting existing files

WinNT.*.Print.Command: AcroRd32.exe
Unix.*.Print.Command: xprint -P%p %f
Print.Printer: 32-rb205-hp
Print.Directory: .

• Print command is enabled and pops-up a simple print dialog. Both
parameters can be set via the new Print.Command and Print.Printer
resources:

10Ilka Antcheva ROOT Users Workshop 28-30 September 2005

Graphics Editor (1)Graphics Editor (1)

• Object orientation
of editor design

• Manage GUI
complexity by
object editors

• Presents the right
GUI at the right
time according to
the selected object
in the canvas

• Easy-to-use

• Capacity for growth

11Ilka Antcheva ROOT Users Workshop 28-30 September 2005

Graphics Editor (2)Graphics Editor (2)
Signals/Slots communication mechanism handles GUI actions:

• Canvas sends a signal identifying which object is selected

• Corresponding object editor is activated and ready for use

12Ilka Antcheva ROOT Users Workshop 28-30 September 2005

Graphics Editor (3) Graphics Editor (3)

• Global – has own application
window and can be
connected to any created
canvas in a ROOT session.

ROOT graphics editor can be:

• Embedded – connected only
with the canvas in the
application window

13Ilka Antcheva ROOT Users Workshop 28-30 September 2005

• Modular – it loads the corresponding object editor objEditor
according to the selected object obj in the canvas respecting the
class inheritance.

• Algorithm:
Search for a class name objEditor (correct naming is important).

Check that this class derives TGedFrame (the editor base class).

Make an instance of the object editor using TROOT::ProcessLine method.

Scan all base classes for corresponding object editors.

Graphics Editor (4)Graphics Editor (4)

TArrow TAttMarker TCurlyArc TH1 TPad

TAttFill TAttText TCurlyLine TH2 TPaveStats

TAttLine TAxis TFrame TGraph . . .

14Ilka Antcheva ROOT Users Workshop 28-30 September 2005

• Can be extended easily by any user-defined object editor - this
makes GUI design easier and adaptive to the users’ profiles.

• Rules to follow:
Derive in the code from the base editor class TGedFrame.

Correct naming convention: the name of the object editor should be the
object class name + 'Editor’.

Register the new object editor in the list TClass::fClassEditors at the end of
its constructor.

Use signals/slots communication mechanism for event processing.

Implement SetModel method to set GUI widgets according to the object’s
attributes.

Implement all necessary slots & connect them to appropriate widget signals.

Graphics Editor (5)Graphics Editor (5)

15Ilka Antcheva ROOT Users Workshop 28-30 September 2005

• Top level interface
• Manage a collection of TStyle objects

• Create a new style

• Delete a selected style

• Import from a canvas / a C++ macro

• Export to a C++ macro

• Apply on all canvases or a selected object

• Activate the style editor

• Preview window
• Show the predicted results

• On line update or by request

• Placed in front of the selected canvas

• Style Editor

Style Manager (1)Style Manager (1)

16Ilka Antcheva ROOT Users Workshop 28-30 September 2005

• To edit the selected TStyle object
• Every data member can be edited

• Protect users from errors– they can go
back to a previous saved state easily

• Update the Preview by request

• Help

• Only information relative to the
current task is presented; other GUI
parts are hidden.

• Full and continuous feedback on the
action result.

• GUI elements are grouped according
to the task flow.

Style Manager (2)Style Manager (2)

17Ilka Antcheva ROOT Users Workshop 28-30 September 2005

GUI Builder (1)GUI Builder (1)

• GUI Builder simplifies the
process of designing GUIs
based on the ROOT widget
classes.

• Using Ctrl+S or SaveAs dialog,
users can generate C++ code in
a macro that can be edited and
executed via CINT interpreter:

root [0] .x example.C
// transient frame

TGTransientFrame *frame2 = new TGTransientFrame(gClient->GetRoot(),760,590);
// group frame
TGGroupFrame *frame3 = new TGGroupFrame(frame2,"curve");
TGRadioButton *frame4 = new TGRadioButton(frame3,"gaus",10);
frame3->AddFrame(frame4);

frame2->SetWindowName(“Fit Panel");
frame2->MapSubwindows();
frame2->Resize(frame2->GetDefaultSize());
frame2->MapWindow();
}

18Ilka Antcheva ROOT Users Workshop 28-30 September 2005

GUI Builder (2)GUI Builder (2)

Current status

• Tests and validation of the current version
• Layout a GUI quickly by dragging widgets, setting layout managers,

changing options in the right-click context menus.

• Final design can be saved as a C++ macro

Next steps

• To complete the GUI widget palette with combo/list boxes, double
sliders, list view, list tree, shutters, button group, etc.

• To develop tools for signals/slots communication mechanism.

• To provide examples for several basic types of GUIs (as tutorials)

19Ilka Antcheva ROOT Users Workshop 28-30 September 2005

Undo/Redo ToolsUndo/Redo Tools

• Allow users to recover from mistakes - very important part of GUI
that will provide:
• A stack of states/actions to go back

• Confirmation of destructive actions: overwrite, delete, etc.

• Main idea: to create instances of so-called command objects for all
editing actions.

• Tests and validation of already implemented classes:
• TQCommand – each command knows how to undo its changes to bring the

edited object back to its previous state.

• TQCommandHistory

• TQUndoManager – recorder of undo and redo operations; it is the
command history list which can be traversed backwards and upwards
performing undo/redo operations.

20Ilka Antcheva ROOT Users Workshop 28-30 September 2005

Next Steps (1)Next Steps (1)

• New object editors

• Undo/Redo tools

• Fit Panel

• New GUI widgets

• GUI Builder

• ROOT commands
in tool tips

• Help

• GUI Tutorials

• Documentation

root[9] gPad->SetLogy(1);

21Ilka Antcheva ROOT Users Workshop 28-30 September 2005

Next Steps (2)Next Steps (2)

GUI Classes

Oct-05 Dec-05 Mar-06

Undo/Redo Tools

Jul-06

Object Editors

Fit PanelStyle Manager

GUI Builder

Table Widget

22Ilka Antcheva ROOT Users Workshop 28-30 September 2005

