
9/28/2005 Philippe Canal, Root Workshop 2005 1

Cint version 6

2 May 2005 @ CERN
Masaharu Goto

9/28/2005 Philippe Canal, Root Workshop 2005 2

Agenda

Version 5 Issues
Simplification of operation
Version 5 / 6 schematics
Execution flow
Status

9/28/2005 Philippe Canal, Root Workshop 2005 3

Version 5 issues

Scope problem
• Block scope variables behave differently

Loop bugs
• Due to complicated loop compilation mechanism

Bytecode limitation
• Eventually, macro runs much much slower

Maintenance
• Badly organized source code. Hard to fix bugs

9/28/2005 Philippe Canal, Root Workshop 2005 4

Simplification of operation

Version 5
• On the fly interpretation
• Loop compilation
• Function compilation
• Native execution

Version 6

• Function compilation
• Native execution

Reduced complexity of execution system

9/28/2005 Philippe Canal, Root Workshop 2005 5

Version 5 / 6 Schematics

On memory
Dictionary DB

ERTTI API
classes

Bytecode
engine

Everything else
- Interpreter -

- bytecode compiler -
- debugger -

- loader/reader -

Dictionary
generator

New bytecode compiler
Version 6

Legacy code

9/28/2005 Philippe Canal, Root Workshop 2005 6

Simplified version 6
class diagram

G__functionscope

+ compile_XXfunction

G__blockscope

+ compile

G__bc_compile_function

G__virtualreader

+ fgetstream
+ fgettoken

G__srcreader<T>

+ fgetstream
+ fgettoken

G__fstreamG__sstream

G__TypeReader

G__TypeInfo

G__ClassInfo

G__getexpr

Legacy code

ERTTI

On memory
Dictionary DB

9/28/2005 Philippe Canal, Root Workshop 2005 7

Version 6 execution flow

Pre-run
• Read source file
• generate on memory dictionary
• generate virtual table

At execution, for every function call
• bytecode compilation G__bc_compile_function()

• execution G__exec_bytecode()

9/28/2005 Philippe Canal, Root Workshop 2005 8

Simple example

#include <cstdio>
using namespace std;

void f(int a) {
printf(“a=%d\n”,a);

}

int main() {
printf(“start\n”);
f(1234);
return(0);

}

1: Compile “main”
f() is resolved but not compiled yet

2: Run “main”
When it comes to run f()

1: Compile “f”
2: Run “f”

9/28/2005 Philippe Canal, Root Workshop 2005 9

How to use version 6

When you compile Cint
• Define G__CINT_VER6 in SYSMACRO
• Add CINT_V6 source files bc_XXX.o

When you run Cint
• Use -@ command line option

(without -@, Cint behaves as version 5)

9/28/2005 Philippe Canal, Root Workshop 2005 10

Status : Sept 2005

Re-engineering started in Apr 2004
Simple script begin to run in Aug 2004
• Scope issue is cleared

Gone through most of the cint/test test-suite
Work to be done
• Implement missing features
• Go through test-suite

Challenges
• Virtual base class and other complicated C++ features

9/28/2005 Philippe Canal, Root Workshop 2005 11

Cint & Reflex

Issues and Plans

9/28/2005 Philippe Canal, Root Workshop 2005 12

What we want to do

Modernize the data structures (G__struct
replacement)
Offer the optional ability to use gcc_xml
for parsing the header files
Unify C++ dictionaries for LHC
experiments

9/28/2005 Philippe Canal, Root Workshop 2005 13

Requirements

No loss in functionality
User level backward compatibility
• including dictionary generation steps

Support for the current platforms

Avoid (as much as practical) code duplication in particular we would like to
avoid having the whole CINT code having to support 2 dictionaries

Integration with ROOT

CINT
API

ROOT
meta

ROOT Meta
Datastructs

CINT
Datastructs

CintDict.so

Cintex

CINT
interpreter

PyRoot

Reflex
API

Reflex
Datastructs

RflxDict.so pyreflex

Integration with ROOT

CINT
API

ROOT
meta

ROOT Meta
Datastructs

CINT
interpreter

PyRoot

Reflex
API

Reflex/CINT
Datastructs

RflxDict.so pyreflex

Integration with ROOT

CINT
API

ROOT
metaROOT Meta

CINT
interpreter

PyRoot

Reflex
API

Reflex/CINT
Datastructs

RflxDict.so pyreflex

9/28/2005 Philippe Canal, Root Workshop 2005 17

Cint/Reflex Workshop

Backward compatibility
• Of course, but how much?

Distribution/Coding Issues
• New code is in C++ but existing CINT code was in C
• Python dependency (not fundamental)
• Optional gcc xml dependency

• portability and ease of build
• Coordination with non gcc compilers

• Distribution
• how does Masa access/use the Reflex code

• CINT Code development
• To CVS or not to CVS?

9/28/2005 Philippe Canal, Root Workshop 2005 18

Cint/Reflex Workshop in May

Input for the Dictionary Generation
• LCGdict uses an XML files as input
• makecint/rootcint uses #pragma as input
• For backward compatibility we should support

both.

9/28/2005 Philippe Canal, Root Workshop 2005 19

CINT/Reflex Structures

G__tagtable
G__var_array
G__ifunc_table
G__inheritance
G__typedef
G__...template…

Reflex::Type
vector<Reflex::Member>
vector<Reflex::Member>
vector<Reflex::Base>
Reflex::Type
Reflex::….Template…

9/28/2005 Philippe Canal, Root Workshop 2005 20

Transition Path
Both CINT and Reflex can refer to any class using an ‘int’. A
translation table can be kept to be able to switch back and
forth between the two.
Reflex is able to fill (most) of the CINT in-memory structure
using Cintex
From then on, we need to

a) insure that Reflex is complete by migrating rootcint/makecint and
doing extensive test

b) from then on we would know that the Reflex data and the CINT data
are exact duplicate

c) Starting moving code little by little from using the current CINT
structure to access the Reflex structure (since we know the data to
be the same this should only be a coding issue).
[This includes both reading and writing into the dictionary]

9/28/2005 Philippe Canal, Root Workshop 2005 21

Proposed plan
1. Move to CVS code dvpt environment
2. Incorporate gcc_xml, Reflex and Cintex in CINT and ROOT build system

3. Start compiling the existing CINT code in C++, declaring the existing C public API
as ‘extern C’ (for full backward compatibility)

4. a) Provide an equivalent to makecint generating reflect dictionary
5. b) Provide an equivalent to makecint using lcg_dict

[At this point we can check that Reflex cover all the CINT data structure]

6. Replace access to data members of G__struct to calls to the Reflex equivalent
7. Repeat 6 for all data members
8. Remove G__struct
9. Repeat 6/8 with the various CINT C structures.

Main advantages of this plan is that after each step we always have a fully functioning CINT.
Albeit slower and bigger until we remove all duplications

10. Integrate Into ROOT

9/28/2005 Philippe Canal, Root Workshop 2005 22

Done so far

Migrated CINT source code to CVS
Migrated CINT source code to C++
Kept the extern C interface
• i.e. the CINT library is binary backward-

compatible

Wrote a version of rootcint issuing Reflex
dictionary

9/28/2005 Philippe Canal, Root Workshop 2005 23

Next steps

For the October release
• Releasing the rootcint option –reflex

For the December release
• Add option to rootcint to use gcc_xml as the parser

(when available)

Adapting the CINT source code to access the
Reflex in-memory database
• Expected completion by the end of April 2006

