
ROOT Users Workshop 28-30 Sep 2005

3D Viewers In ROOT3D Viewers In ROOT

Richard Maunder / Richard Maunder / TimurTimur PocheptsovPocheptsov

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 2

OverviewOverview

• General Viewer Architecture

• GL Architecture

• GL Features

• GL Performance

• Conclusion

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 3

General Architecture IGeneral Architecture I
• All current and future 3D viewers share common external infrastructure:

• TVirtualViewer3D interface:
• Test viewer preferences and capabilities.
• Adding objects – including composite operations.
• Control the viewer via scripting etc.

• TBuffer3D class hierarchy:
• Describe 3D objects ("shapes").
• Split into sections, filled by negotiation with viewer.
• Base TBuffer3D for common sections
• TBuffer3D sufficient for any object in raw tessellated* form
• Subclasses for abstract shapes which viewer(s) can tessellate natively

• These enable:
• Decoupling of producers (geometry packages etc) who model

collection of 3D objects from consumers (viewers) which display.
• Producer free of explicit drawing code & viewer specific

branching.
• Support differing viewers and clients efficiently:

• Local/global frame
• Bounding boxes
• Individual objects / placed copies

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 4

General Architecture IIGeneral Architecture II

TVirtualViewer3D
Interface

TGeoPainter

TBuffer3D

S1

S2

S4

Transform

Node

Volume

T1A_1

TOP

A_2

A

B_1 N4 N5

CB

Shape

T1T1T1

T1

S3

TGeoManager

AddObject(...)

‘Standalone’ shapes
TPolyLine3D etc

Producers Consumers

TViewerOpenGL
Logical / Physical maps of

objects. Can be rebuilt.

TViewerX3D
Scene of points/segments/

polys. Single build.

TViewer3DPad
Direct draw each time.

Frame buffered.

New Geometry
TGeoXXXX

Old Geometry
TNode/TBRIK etc

Other clients
GEANT4 etc

Intermediaries
TVirtualViewer3D & TBuffer3D

TNode
(g3d Geom)

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 5

GL ArchitectureGL Architecture
• X3D and Pad simple viewers:

• Accept all objects send – with no caching or detection of copied placements.
• No viewer side tessellation – always request Raw section of TBuffer3D to be filled.

• By contrast GL:
• Only accept subset of objects considered ‘of interest’ at present into viewer.
• Viewer can prompt external client to rebuild scene of objects when camera limits have changed

significantly.
• Can request client not to send contained children of object via TVV3D::AddObject() return –

for efficiency.
• Enables viewer to connect to very large geometries without overloading - pull required parts

on demand.
• Detect repeated placement of same object (logical) in different 3D locations (physical).
• Lazy caching of logicals (with expensive internal or externally created tessellation) and

physicals.
• Native OpenGL shapes:

• TBuffer3DSphere - solid, hollow and cut spheres*
• TBuffer3DTubeSeg - angle tube segment
• TBuffer3DCutTube - angle tube segment with plane cut ends.

• Scene rebuild through binding to pad –TPad::Paint. Remove – make all communication
with external client via signals (publish scene, selection change)

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 6

GL Architecture : Scene Rebuilds IGL Architecture : Scene Rebuilds I

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 7

GL Architecture : Scene Rebuilds IIGL Architecture : Scene Rebuilds II

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 8

GL Architecture : Scene Rebuilds IIIGL Architecture : Scene Rebuilds III

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 9

GL Features : RenderingGL Features : Rendering
• 3 draw styles

• Added support for single frame pdf and eps output.
• Composite (CSG) shapes

• Both TGeoComposite and general cases via TVirtualViewer3D interface:

virtual Bool_t OpenComposite(const TBuffer3D & buffer, Bool_t * addChildren = 0) = 0;
virtual void CloseComposite() = 0;
virtual void AddCompositeOp(UInt_t operation) = 0;

kCSUnion, kCSIntersection, kCSDifference, kCSNoOp

• Not supported in X3D/Pad viewers – each composite component treated as individual object.

Wireframe Filled polygons Outline

+ =

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 10

GL Features : CamerasGL Features : Cameras
• Improved interactions

• Shift: x 10
• Ctrl: x 0.1
• Shift+Ctrl: x 0.01
• Double click reset

• ‘Heads up’ camera – first person shooting games.
• Orbit round own axis with mouse – truck with arrow keys.
• Box zoom, frame all/selected.

Orbit
rotate round scene center

Left Mouse + Drag

Dolly
move camera in/out along eye line

Right Mouse + Horizontal Drag

Truck
pan parallel to film plane

Middle Mouse + Drag
arrow keys

Zoom
adjust lens field of view

Mouse Wheel
j / k keys

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 11

GL Features : Manipulators GL Features : Manipulators

• Add in-viewer manipulators for direct control of object
• Translation & scaling along objects local axis.

• Rotation of these local axis.

• Implemented for clipping objects – trivial to extend for all objects.

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 12

GL Features : ClippingGL Features : Clipping

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 13

GL Features : ClippingGL Features : Clipping

• Two techniques
• OpenGL® Clip Planes: Multiple renders, each with one or more clip planes, combine together

+ + =

+ Fast and simple, interactive (few planes)
- Accurate only for shapes described by planes – bounding box approx otherwise.
- Clipped solids not capped –hollow.

• CSG Operation: Add all object meshes (o1..on), subtract clipping object mesh (c)

o1 + o2 + …… + on – c
+ Any arbitrary clipping shape possible
+ Proper capping of solids
- Cannot adjust interactively

• Can clip away inside or outside the clip shape by negating planes or CSG operation.
• Separate 3D object collections with different clipping – e.g. detector geometry inside, events outside.

• Support both methods: clip planes for interactive setup (soon), CSG for high quality renders.

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 14

GL Features : GL GL Features : GL –– in in -- TPadTPad
• Existing TPad/TCanvas has support for:

• 2D via TVirtualX (X11/Win32 platform APIs)
• 3D outlines via TView 3D -> 2D projection
• 3D filled objects via ray tracing

• New method added:
• Embedded OpenGL view, mixed with normal 2D graphics
• 2D via TVirtualX (as now)
• 3D via OpenGL

• Enable with gStyle->SetCanvasPreferGL(kTRUE)
• OpenGL is rendered into offscreen pixmap
• Bitmap and normal GL Window handled by TGLManager
• Advantages:

• Gain all the features of the standalone GL viewer.
• Only minor modifications in existing TPad \TCanvas code.
• No need to duplicate 2D drawing in OpenGL.

• Disadvantages:
• OpenGL may not be accelerated by graphics hardware – not ideal for complex geometries. But

still faster than ray tracing.

2D3D

TView

TPad/TCanvas

TVirtualX

Window

Pixmap

OpenGL

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 15

GL Performance : CullingGL Performance : Culling

• Frustum Culling: Discard objects outside camera.
• Test scene bounding first – if visible, all objects visible.

• Otherwise test each shape BB - skip drawing those outside.

• Significant 5-10x speed up (when viewing portion of scene)

• Contribution Culling: Discard small objects – part of LOD.

• Occlusion Culling: Object masked by others.
• Potentially v useful given ‘onion’ layout of detector geometries.

• But complicated - transparency, cut objects.

• Left to OpenGL at present.

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 16

GL Performance : Object DrawsGL Performance : Object Draws
• Added generic support for:
• Level of Detail (LOD) scheme

• Tessellate object at detail suitable for projected size + GL performance.
• Distribute GPU power better: 5-10 x speed up for ‘same quality’
• Draw() methods take UInt_t LOD – quality factor 0 – 100%
• LOD found from object bounding box projected onto screen
• Combined with GlobalLOD to factor in overall GL performance.

• Display Lists
• ‘Pre-compile’ draw command into efficient hardware specific GL format.
• Added singleton DL cache – based on object ID and LOD.
• Simple auto capture of any TGLDrawable by setting flags.

• Only TGLSphere (gluSphere) taking advantage at present – major

• Add more native shape types (common) supporting LOD + enable DL caching.
• Support high quality tessellation - degrade internally in response to LOD

(various techniques)
• Add memory management in DisplayList cache – purge least frequent / oldest

one to avoid thrashing.

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 17

GL Performance : Scene DrawsGL Performance : Scene Draws
• Two-pass rendering of scene
• Interactive – speed:

• Lower GlobalLOD – fixed 50% presently.
• Skip very low DrawLOD (projected size) objects
• Use sorted draw list: large -> small based on object bbox volume (true size).
• Time limited – 100msec (10 fps) – rest discarded.
• Ensure responsiveness with wide variety of hardware / software GL performance.

• Final – quality:
• Unlimited time, everything drawn, GlobalLOD = 100%

• Interrupt/pause final pass render when GUI event enters queue – continue/terminate.
• Skip interactive if can complete final render in time slot.
• Make GlobalLOD settings dependent on performance.
• Split ‘quality’ pass into multiple accumulations – so low performance hardware can

gradually ‘fill in’ details over extended (10 sec+) period, without stalling.
• Retain static draw buffers (geometry) – redraw varying (tracks/particles) over top.

Richard Maunder ROOT Users Workshop 28-30 Sep 2005 18

ConclusionConclusion

• 3D Architecture:
• Now stable – can extend easily for extra shapes etc

• Add extensions for:
• Scripted control of viewer via TVV3D - clipping, cameras, lights.

• Efficient collections of particles/tracks.

• Need user input on these.

• GL Viewer:
• Internal structure now fairly stable + suitable for detector geometry.

• Complete clipping and GL-in-Pad.

• More native GL shapes to take advantage of performance/quality features.

• General components for event display.

