Cellular generator mFOA
distributed with ROO

ROOT Users Workshop
September 2005

S.Jadach and P.Sawicki
IFJ PAN Krakow, Poland

Stanislaw.jadach@ifj.edu.pl Pawel.sawicki @ifj.edu.pl

see also
S.Jadach and P.Sawicki, physics/0506084

Supported in part by EU grant MTKD-CT-2004-510126
realized in partnership with CERN PH/TH Division

What 1s FOAM ? /

* FOAM algorithm is an universal MC event
generator/integrator.

* [ts primary purpose is the generation of events according to
user defined arbitrarily complicated multidimensional
probability distribution.

* As other MC generators FOAM can be used also for
computing integrals.

* FOAM was invented primarily for use in high energy
physics. However its area of applications is much wider.

e At this time FOAM has reached the level of mature MC tool
and one of our goals 1s to make i1t more friendly for the
average user.

* FOAM 1s an example of self-adapting cellular generator.

* [t means that integration space 1s divided into cells which form a
system called foam.

*°The foam 1s constructed during the exploration phase which 1s
driven by the user defined probability distribution.

*The main aim of the exploration process 1s to reduce either
1) the ratio of the maximum weight to the average weight
(generating unweighted events) or

2) the ratio of the variance to the average weight (computing
integrals)

e After the exploration MC events are generated.

*For the detailed description of the algorithm see
S.Jadach, Comp. Phys. Commun. 152 (2003) 55

Examples of “foam/

Cellular foam is constructed by binary splits of cells which can be either

hyperrectangles or simplices (or even Cartesian product of both)

215
1
214 i
198 151 231 :
108 a7 44
= T lfi. [1@ i 7 52
o 210 |211 P—{ B | 8 a8
A BY
mlm ?45|n4o 2 = %
w | o4 Tt ias |18 ’m‘ 118 Il
45
N L3 3 g P 1
sa | 208 220 105] u| ® 200 201 e
88
174uso‘iiLl a0 42
181
a4
117 - /
230
1k 22
1™ 1o n 138 130|140 141 22“‘
40 | 44
bifinarr i
H o
ad 47
204 Tjg 81 %B 3
47 4y 90 221 100 |1dadoabd 148 109 5 2
[o]
I a0 a2 4
102 aa’a4| | 2342 7‘129 222 a5
T Lk § 5
1
130 J08| 206 e [[¥ 110 T e 4 .
e ——
W 7 77 232 T
246 ! - - 1477 a1
154 [155 [&1

Recent development 1n FOAM a%

d N

mFOAM-1.02 FOAM-2.06

Short description of mFOAM-1.02

mFOAM 1s part of ROOT distribution (version 4.04 and later).

In mFOAM cells are hyperrectangles. The foam 1s constructed in the
recursive process of binary splittings.

User interface 1s maximally simplified. User should specity his
probability distribution function (PDF) and choose random number
generator from ROOT's TRandom class.

There are nine principal configuration parameters. User can modify
them easily.

Many internal utilities are replaced by ROOT classes.

All classes of mFOAM are fully persistent. It 1s possible to record
easily status of the generator at disk. Later on mFOAM objects can be
restored in ready to go state.

TFoam class %

®T'his is the main class of mFOAM.

*Each instance of TFoam class 1s independent MC event
generator. For example the following piece of code :
TFoam *FoamX= new TFoam('FoamX');

creates an instance of mFOAM generator called FoamX.

* After creation of TFoam object user can modify configuration
parameters with the help of appropriate setter methods.

*The most important procedure in TFoam class 1s the Initialize
method which performs the foam build-up.

*Objects of TFoam class can be written to disk at any time after
initialization and restored later.

TFoamCell class %

*TFoamCell class contains methods and data relevant for a
single cell object.

*Most of the methods are setters and getters. There are also
procedures which calculate volume of the cell and absolute
coordinates of MC events.

*Cells in mFOAM are organized in the linked tree structure.
Each cell contains pointers to a parent cell and to two
daughter cells.

°[n mFOAM instead of raw C++ pointers we employ special
class TRef of persistent pointers to fix a certain problem 1n
ROOQOT automatic streamers (cloning objects).

User interface to PDE /

*TFoamIntegrand 1s Abstract Base Class. User should define the
Density method (probability distribution function).
class TFDISTR::public TFoamIntegrand{

public:

TFDISTR();

Double_t Density(Int_t, Double_t *){........ }
}

*The pointer to probability distribution 1s set to mFOAM object by
setter method SetRho(TFoamlIntegrand *). It can be eventually
redefined later by ResetRho(TFoamlIntegrand *) method.

*In applications interpreted by CINT probability distribution 1s
defined as a global function and the setter method 1s
SetRholnt(void *).

User application progran/

User application programs can be run as:

1) Macro programs interpreted directly by rootcint (CINT)
(preferred method for simple applications)

2) Macro programs compiled by ACLi1C facility of ROOT
(preferred method for medium size applications)

3) Stand-alone application program linked with ROOT
libraries (large-scale programs with possibly many
mFOAM objects).

In the standard ROOT distribution in the /tutorials
subdirectory there are 3 demonstration programes.

Demonstration programs %

*Macro foam_kanwa.C can be run directly from CINT
command line (scenario 1)
root [0] .x foam_ kanwa.C
This macro produces graphical output.
*Macro foam_demo.C can be compiled by ACLiC
root [1] .x foam_demo.C+
The shared library is created and just after initialization
mFOAM object 1s written to disk.
*We can now test persistency with the macro
foam_demopers.C
root [2] .x foam_demopers.C
The output from foam_demo.C and foam_demopers.C is
1dentical.

ouputlill

1Ca

Example graph

hst_xy

100000

Entries

0.4985

0.4999

Mean x
Mean y

x-y plot

4
¢

3
il

LELEY
i
_-1...-.-____

More advanced use of mFO%

*The package mFoam-examples

-1.2.tar contains stand-

alone demonstration programs (It 1s available from

authors web page).

*To compile and install the above examples automake

tools are required (see READMI

= file).

*These programs demonstrate advanced use of mFOAM
with two mFOAM objects and one central random

number generator serving both.

*There are many methods to org

anize relations between

random number generators and user defined probability
distributions objects 1n the implementation of persistency.

Conclusions A

*EFOAM has reached the level of well tested MC tool.

*mFOAM was designed to provide solutions of many
every-day problems in the MC simulations with less
effort.

*In the present project we payed special attention to

make 1t more user friendly. We achieved this goal by
integration of FOAM with ROOT.,

*We expect the feedback from its current and future
users

