Developments in other math and statistical classes

Anna Kreshuk, PH/SFT, CERN

Contents

- News in fitting
 - □ Linear fitter
 - □ Robust fitter
 - □ Fitting of multigraphs
- Multidimensional methods
 - □ Robust estimator of multivariate location and scatter
- New methods in old classes
- Future plans

Linear Fitter (0)

- To fit functions linear in parameters
 - Polynomials, hyperplanes, linear combinations of arbitrary functions
- TLinearFitter can be used directly or through TH1, TGraph, TGraph2D::Fit interfaces
- When used directly, can fit multidimensional functions

Linear Fitter (1)

- Special formula syntax:
 - □ Linear parts separated by "++" signs:

```
\bullet "1 ++ \sin(x) ++ \sin(2^*x) ++ \cos(3^*x)"
```

- \bullet "[0] + [1]*sin(x) + [2]*sin(2*x) + [3]*cos(3*x)"
- ☐ Simple to use in multidimensional case
 - *x0 ++ x1 ++ exp(x2) ++ log(x3) ++ x4"
- Polynomials (pol0, pol1...) and hyperplanes (hyp1, hyp2, ...) are the fastest to compute
- By default, polynomials in TH1, TGraph::Fit functions now go through Linear Fitter
- Data to be used for fitting is not copied into the fitter

Linear Fitter (2)

- Advantages in separating linear and non-linear fitting:
 - Doesn't require setting initial parameter values
 - □ The gain in speed

Function	Linear fitter	Minuit
Pol3 in TGraphErrors	Average CPU time	Average CPU time
1000 fits of 1000 points	1.95	30.54
TMath::Sin(x) +	Average CPU time	Average CPU time
TMath::Sin(2*x)	2.39	21.34

30th September 2005 ROOT2005 Workshop 5

Robust fitting (0)

- Least Trimmed Squares regression extension of the TLinearFitter class
- Motivation: least-squares fitting is very sensitive to bad observations
- Robust fitter is used to fit datasets with outliers
- The algorithm tries to fit *h* points (out of *N*) that have the smallest sum of squared residuals

Robust fitting (1)

High breakdown point

 smallest proportion
 of outliers that can
 cause the estimator to
 produce values
 arbitrarily far from the
 true parameters

Graph.Fit("pol3", "rob=0.75", -2, 2);

2nd parameter – fraction *h* of the good points

TMultiGraph::Fit

A multigraph is a collection of graphs

- Fit function, implemented in this class, allows to fit all graphs simultaneously, as if all the points belong to the same graph
- All options of TGraph::Fit supported

Multivariate covariance

- Minimum Covariance Determinant Estimator a highly robust estimator of multivariate location and scatter
- Motivation: arithmetic mean and regular covariance estimator are very sensitive to bad observations
- Class TRobustEstimator
- The algorithm tries to find a subset of h observations (out of N) with the minimal covariance matrix determinant

Multivariate covariance

- High breakdown point
- Left covariance ellipses of a 1000point dataset with 250 outliers
- Right distances of points from the robust mean, calculated using robust covariance matrix

Indices of outlying points can be returned

News in TMath

- More distribution functions, densities and quantile functions
- Median (for weighted observations) and K-th order statistic
- Kolmogorov test for unbinned data

News in TH1 and TF1

■ TH1:

- □ Chi2 test
- Mean & RMS error, skewness and kurtosis

■ TF1:

- □ Derivatives (1st, 2nd and 3rd)
- Improved minimization a combination of grid search and Brent's method (golden section search and parabolic interpolation)

Future plans (0)

Short term:

- □ sPlot A statistical tool to unfold data distributions
 - class TSPlot to be added soon

More about *sPlot* in Muriel Pivk's presentation at 11:05

Future plans (1)

- From PHYSTAT05 conference in Oxford, September 2005:
 - Following a talk by Marc Paterno, an interface with R was discussed ROOT Trees can already be read from R promt
 - □ Following a talk by Jim Linnemann, a repository of physics-oriented statistical software in Fermilab was discussed.
 - □ Rajendran Raja Goodness of fit for unbinned likelihood fits
 - Nikolai Gagunashvili Chi2 test for comparison of weighted and unweighted histograms
 - □ Martin Block Outlier rejection and fitting with Lorentz weights
 - ☐ F.Tegenfeldt & J.Conrad More on confidence intervals
 - □ Kyle Cranmer More on hypothesis testing and confidence intervals
 - □ A lot of other interesting suggestions...

Future plans (2)

- Statistical plots
 - Quantile-quantile plot
 useful for
 determining if 2
 samples come from
 the same distribution
 - □ Boxplot
 - □ Spiderplot

Future plans (3)

- Loess locally weighted regression
 - □ A procedure for estimating a regression surface by multivariate smoothing
- FFT
- Cluster analysis