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•TSpectrum class of the ROOT system is an efficient tool aimed for the analysis of spectra 
(histograms) from the experiments in nuclear, high  energy physics (possibly other types of data)

•it includes non-conventional processing functions of
o background estimation, elimination
o deconvolution – resolution improvement
o smoothing
o peak identification
o fitting
o orthogonal transforms, filtering, enhancement

Introduction

Aim of the talk

• to present the set of functions implemented in TSpectrum class
• to explain briefly, the principles of the mathematical methods implemented in TSpectrum class
• to explain the meaning of individual parameters in the calls of TSpectrum functions
• to give few examples of how to use the functions in TSpectrum and illustrating the influence of  

the parameters
• to outline possible improvements, modifications, and extensions to TSpectrum2, 3



Background estimation

•spectrum-pointer to the vector of source spectrum
•size-length of the source spectrum
•number_of_iterations or width of the clipping window

Goal: Separation of useful information (peaks) from useless information (background)

• method is based on Sensitive Nonlinear Iterative Peak (SNIP) clipping algorithm
• new value in the channel “i” is calculated
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where p = 1, 2, …, number_of_iterations. In fact it represents second order difference filter (-1,2,-1) 

const char* Background1(float *spectrum, int size, int number_of_iterations) 

Function 1:

Parameters

This function calculates background spectrum from the source spectrum.  The result is 
placed in the vector pointed by spectrum pointer.  On successful completion it returns 0. 
On error it returns pointer to the string describing error. 



Example 1– script Background1.c :

Figure 1 Example of the estimation of background for number_of_iterations=6. Original 
spectrum is shown in black color, estimated background in red color.



•spectrum-pointer to the vector of source spectrum
•size-length of the source spectrum
•number_of_iterations or width of the clipping window
•direction- direction of change of clipping window - possible values: 

BACK1_INCREASING_WINDOW           
BACK1_DECREASING_WINDOW                 

•filter_order-order of clipping filter - possible values:
BACK1_ORDER2                          
BACK1_ORDER4
BACK1_ORDER6                         
BACK1_ORDER8

•compton- logical variable whether the estimation of Compton edge will be included 
BACK1_EXCLUDE_COMPTON                                           
BACK1_INCLUDE_COMPTON 

const char* Background1General(float *spectrum, int size, 
int number_of_iterations, int direction, int filter_order, bool compton)  

Function 2:

Parameters

It represents generalization of the previous function. The meaning of the first three
parameters is the same. Moreover one can change the direction of the change of 
the clipping window, the order of the clipping filter and to include the estimation of Compton 
edges.



One can notice that in Figure 1 at the edges of the peaks the estimated background goes under the 
peaks. An alternative approach is to decrease the clipping window from a given value 
number_of_iterations to the value of one (DECREASING CLIPPING WINDOW) is presented in 
Example 2. 

Example 2 – script Background1General_decr.c :

Figure 2 Example of the estimation of background for number_of_iterations=6 using 
decreasing clipping window algorithm. Original spectrum is shown in black color, estimated 
background in red color.



•the question is how to choose the width of the clipping window, i.e.,  number_of_iterations
parameter. The influence of this parameter on the estimated background is illustrated in Figure 3.

Example 3 – script Background1General_width.c :

Figure 3 Example of the influence of clipping window width on the estimated background for 
number_of_iterations=4 (red line), 6 (blue line) 8 (green line) using decreasing clipping 
window algorithm.

•in general one should set this parameter so that the value 2*number_of_iterations+1 
was greater than the widths of preserved objects (peaks).



•another example for very complex spectrum Figure 4.

Example 4 – script Background1General_width2.c :

Figure 4 Example of the influence of clipping window width on the estimated background for 
number_of_iterations=10 (red line), 20 (blue line), 30 (green line) and 40 (magenta line) using 
decreasing clipping window algorithm.



•second order difference filter removes linear (quasi-linear) background and preserves symmetrical 
peaks.
•however if the shape of the background is more complex one can employ higher-order clipping 
filters (see example in Figure 5)

Example 5 – script Background1General_order.c :

Figure 5 Example of the influence of clipping filter difference order on the estimated 
background for number_of_iterations=40, 2-nd order red line, 4-th order blue line, 6-th order 
green line and 8-th order magenta line, and using decreasing clipping window algorithm.



•sometimes it is necessary to include also the Compton edges into the estimate of the background. 
In Figure 6 we present the example of the synthetic spectrum with Compton edges. 
•the background was estimated using the 8-th order filter with the estimation of the Compton edges 
and decreasing clipping window.
Example 6 – script Background1General_compton.c :

Figure 6 Example of the estimate of the background with Compton edges (red line) for 
number_of_iterations=40, 8-th order difference filter and using decreasing clipping window 
algorithm.
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Possible extension of TSpectrum background estimation method:
•the estimate of the background can be influenced by noise present in the spectrum. We proposed 
the algorithm of the background estimate with simultaneous smoothing

•in the original algorithm without smoothing, the estimated background snatches the lower spikes in 
the noise. Consequently, the areas of peaks are biased by this error. 

Figure 7 Illustration of non-smoothing and 
smoothing algorithm of background estimation 



Deconvolution
Goal: Improvement of the resolution in spectra, decomposition of multiplets

Mathematical formulation of the convolution system is
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•let us assume that we know the response and the output vector (spectrum) of the above given
system. 
•the deconvolution represents solution of the overdetermined system of linear equations, i.e., 
the calculation of the vector x.

•from numerical stability point of view the operation of deconvolution is extremely critical (ill-posed 
problem) as well as time consuming operation. 
•the Gold deconvolution algorithm proves to work very well, other methods (Fourier, VanCittert etc) 
oscillate. 
•it is suitable to process positive definite data (e.g. histograms). 
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Gold deconvolution algorithm

where l is given number of iterations



Function 3:

const char* Deconvolution1(float *source, const float *resp, int size,
int number_of_iterations)

This function calculates deconvolution from source spectrum according to response spectrum 
The result is placed in the vector pointed by source pointer. 
Parameters

•source - pointer to the vector of source spectrum
•resp - pointer to the vector of response spectrum 
•size - length of the source and response spectra
•number_of_iterations – parameter l in the Gold deconvolution algorithm

Figure 9 Response spectrumFigure 8 Source spectrum



• response function (usually peak) should be shifted left to the first non-zero channel (bin) (see 
Figure 9)

Figure 10 Principle how the response matrix is composed inside of the Deconvolution1 
function



Example 7 – script Deconvolution1.c :

Figure 11 Example of Gold deconvolution. The original source spectrum is drawn with black 
color, the spectrum after the deconvolution (10000 iterations) with red color,



• further let us study the influence of the number of iterations on the deconvolved spectrum  (Figure 
12)
Example 8 – script Deconvolution1_iter.c :

Figure 12 Study of Gold deconvolution algorithm. The original source spectrum is drawn 
with black color, spectrum after 100 iterations with red color, spectrum after 1000 iterations 
with blue color, spectrum after 10000 iterations with green color and spectrum after 100000 
iterations with magenta color.
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1. Set the initial solution 
2. Set required number of repetitions and iterations 

3. Set the number of repetitions 

4. Using Gold deconvolution algorithm for find solution 

5. If stop calculation, else
a.apply boosting operation, i.e., set

; 

and is boosting coefficient >0

c. continue in 4.

b. 

Boosted deconvolution

const char* Deconvolution1HighResolution(float *source, const float *resp, int size,
int number_of_iterations, int number_of_repetitions, double boost) 

This function calculates deconvolution from source spectrum according to response spectrum using
boosted Gold deconvolution algorithm. The result is placed in the vector pointed by source pointer. 

Function 4:



Parameters
•source - pointer to the vector of source spectrum
•resp - pointer to the vector of response spectrum 
•size - length of the source and response spectra
•number_of_iterations - parameter L in the boosted Gold deconvolution algorithm
•number_of_repetitions - parameter R in the boosted Gold deconvolution algorithm
•boost – boosting coefficient p (should be >0, recommended range <1, 2>)
Example 9 – script Deconvolution1_hr.c :

Figure 13 Example of boosted Gold deconvolution. The original source spectrum is drawn 
with black color, deconvolved spectrum (200 iterations, 50 repetitions, p=1.2) with red color.



•for relatively narrow peaks in the above given example the Gold deconvolution method combined 
with boosting operation (Deconvolution1HighResolution function) is able to decompose  overlapping 
peaks practically to delta - functions.

•in the next example we have chosen a synthetic data (spectrum, 256 channels) consisting of 5 
very closely positioned, relatively wide peaks (sigma =5), with added noise (Figure 14). 

•thin lines represent pure Gaussians (see Table 1); thick line is a resulting spectrum with additive 
noise (10% of the amplitude of small peaks).

Figure 14 Testing example of synthetic 
spectrum composed of 5 Gaussians with 
added noise

101595001105

10159650001004

203191000803

609573000702

10159500501

AreaHeight PositionPeak #

Table 1 Positions, heights and areas of 
peaks in the spectrum shown in Figure 14



• in ideal case, we should obtain the result given in Figure 15. The areas of the Gaussian 
components of the spectrum are concentrated completely to delta -functions

• when solving the overdetermined system of linear equations with data from Figure 14 in the sense 
of minimum least squares criterion without any regularization we obtain the result with large 
oscillations  (Figure 16). 

• from mathematical point of view, it is the optimal solution in the unconstrained space of 
independent variables. From physical point of view we are interested only in a meaningful solution. 

• therefore, we have to employ regularization techniques (e.g. Gold deconvolution) and/or to 
confine the space of allowed solutions to subspace of positive solutions. 

Figure 16 Least squares solution of the 
system of linear equations without 
regularization

Figure 15 The same spectrum like in Figure 
14, outlined bars show the contents of 
present components (peaks) 



Example 10 – script Deconvolution1_wide.c :

Figure 17 The original source spectrum is drawn with black color, deconvolved spectrum 
using classic Gold deconvolution (10000 iterations) with red color, deconvolved spectrum 
using classic high resolution Gold deconvolution (200 iterations, 50 repetitions, p=1.2) with 
blue color.



Function 5:
const char* Deconvolution1Unfolding(float *source, const float **resp, int sizex, int sizey, 
int number_of_iterations) 
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This function unfolds source spectrum according to response matrix columns. The result is placed in 
the vector pointed by source pointer. 
Parameters
•source - pointer to the vector of source spectrum
•resp - pointer to the matrix of response spectra 
•sizex - length of source spectrum and # of columns in response matrix
•sizey - length of destination spectrum and # of rows in response matrix
•number_of_iterations – parameter l in the Gold deconvolution algorithm
Note!!! sizex must be >= sizey After decomposition the resulting channels are written back to the 
first sizey channels of the source spectrum. 
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Figure 18  Response matrix composed of neutron spectra of pure chemical elements



Example 11 – script Deconvolution1Unfolding.c :

Figure 19 Source neutron spectrum to be 
decomposed

Figure 20 Spectrum after decomposition, 
contains 10 coefficients, which correspond 
to contents of chemical components 
(dominant 8-th and 10-th components, i.e. O, 
Si)

References:
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[2] Coote G.E., Iterative smoothing and deconvolution of one- and two-dimensional elemental 
distribution data, NIM B 130 (1997) 118.
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Possible new TSpectrum deconvolution methods:

•one-fold Gold deconvolution and its boosted version (see e.g. M. Morháč,
Deconvolution methods and their applications in the analysis of gamma-ray spectra, ACAT2005,  
May 22-27, Zeuthen Germany)

Figure 21 Original spectrum (thick line) and 
deconvolved spectrum using one-fold Gold 
algorithm ( 10000 iterations, thin line)

Figure 22 Illustration of deconvolution 
via boosted Gold deconvolution

10159/6676110/1175

101596/105413100/1004

20319/1993580/793

60957/5893370/702

10159/1041950/491

Original/Estimat
ed area

Original/Estimated 
(max) position

Pea
k #

Table 2 Results of the estimation of peaks in spectrum shown in Figure 22



•Richardson – Lucy  deconvolution and its boosted version -see e.g.
Lucy L.B., A.J. 79 (1974) 745.
Richardson W.H., J. Opt. Soc. Am. 62 (1972) 55.

Figure 23 Illustration of application of 
Richardson-Lucy algorithm of deconvolution

Figure 24 Spectrum deconvolved using 
boosted Richardson-Lucy algorithm of 
deconvolution 

10159/8920110/1115

101596/101851100/1004

20319/1281380/813

60957/6500370/712

10159/1142650/511

Original/Estimated areaOriginal/Estimated (max) positionPeak #

Table 3 Results of the estimation of peaks
in spectrum shown in Figure 24



Smoothing
Goal: Suppression of statistical fluctuations

•there exist enormous number of filtration techniques
•we mention Markov smoothing algorithm, which can be employed for the identification of peaks in 
noisy spectra  
•the algorithm is based on discrete Markov chain, which has very simple invariant distribution
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n is the length of the smoothed spectrum and 

is the probability of the change of the peak position from channel I to the channel i+1. 

iA is the normalization constant so that , 1 , 1 1i i i ip p− ++ = and m is a width of smoothing window. 



Function 6:
const char* TSpectrum::Smooth1Markov(float *source, int size, int aver_window) 

This function calculates smoothed spectrum from the source spectrum based on Markov chain 
method. The result is placed in the vector pointed by source pointer. 

Parameters
•source - pointer to the vector of source spectrum
•size - length of source spectrum
•aver_window - width of averaging smoothing window 

Reference:
[1] Z.K. Silagadze, A new algorithm for automatic photopeak searches. NIM A 376 (1996), 451.



Example 12 – script Smoothing1.c : Example 13 – script Smoothing2.c :

Example 14 – script Smoothing3.c : Example 15 – script Smoothing4.c :

Figure 25 Original noisy spectrum Figure 26 Smoothed spectrum m=3

Figure 27 Smoothed spectrum m=7 Figure 28 Smoothed spectrum m=10



Peaks searching
Goal: to identify automatically the peaks in a spectrum with the presence of the 
continuous background and statistical fluctuations - noise.
The common problems connected with correct peak identification are
•non-sensitivity to noise, i.e., only statistically relevant peaks should be identified.
•non-sensitivity of the algorithm to continuous background.
•ability to identify peaks close to the edges of the spectrum region. Usually peak finders fail to 
detect them.
•resolution, decomposition of doublets and multiplets. The algorithm should be able to recognize 
close positioned peaks.
•ability to identify peaks with different sigma

.

General peak searching algorithm based on smoothed second differences –
implemented in Search1 function in old versions of ROOT (up to the Version 3.04)
•it is based on smoothed second differences (SSD) that are compared to its standard deviations 

Figure 29 Smoothed Second Differences 
(SSD) and its standard deviation in the 
vicinity of peak



Figure31 An example of one-dimensional gamma-ray experimental spectrum with found 
peaks and its inverted positive SSD spectrum

Figure30 Synthetic spectrum and its SSD spectrum



High resolution peak searching algorithm
•it is based on the above presented Gold deconvolution algorithm 
•unlike SSD algorithm before applying the deconvolution algorithm we have to remove the 
background using one of the above presented background elimination algorithms  
•if desired, before applying the peak searching algorithm the Markov smoothed spectrum 
(described in previous section) can be calculated as well 

Function 7:
Int_t Search(TH1 * hin, Double_t sigma, Option_t * option, Double_t threshold) 

This function searches for peaks in source spectrum in hin The number of found peaks and 
their positions are written into the members fNpeaks and fPositionX. The search is performed 
in the current histogram range. 

Parameters
•hin - pointer to the histogram of source spectrum 
•sigma - sigma of searched peaks
•option - if option is not equal to "goff" (goff is the default), then a polymarker object is created and 
added to the list of functions of the histogram. The histogram is drawn with the specified option and 
the polymarker object drawn on top of the histogram. The polymarker coordinates correspond to 
the npeaks peaks found in the histogram. A pointer to the polymarker object can be retrieved later 
via: TList *functions = hin->GetListOfFunctions(); TPolyMarker *pm = (TPolyMarker*)functions-
>FindObject("TPolyMarker") 
•threshold: (default=0.05) peaks with amplitude less than threshold*highest_peak are discarded. 
0<threshold<1 



Example 16 – script Search1.c :

Figure 32 An example of one-dimensional 
synthetic spectrum with found peaks 
denoted by markers



Function 8:
Int_t Search1HighRes(float *source, float *dest, int size, float sigma, double threshold, bool
background_remove,int decon_iterations, bool markov, int aver_window) 

This low level function searches for peaks in source spectrum. It is based on deconvolution
method. First the background is removed (if desired), then Markov spectrum is calculated (if 
desired), then the response function is generated according to given sigma and deconvolution
is carried out. On success it returns number of found peaks.
Parameters
•source - pointer to the vector of source spectrum
•dest – resulting spectrum after deconvolution
•size - length of source and destination spectra
•sigma-sigma of searched peaks 
•threshold-threshold value in % for selected peaks, peaks with amplitude less than 
threshold*highest_peak/100 are ignored
•background_remove-logical variable, true if the removal of background before deconvolution is 
desired  
•decon_iterations-number of iterations in deconvolution operation 
•markov-logical variable, if it is true, first the source spectrum is replaced by new spectrum 
calculated using Markov chains method 
•aver_window - width of averaging smoothing window 
Note
Search1HighRes function provides users with the possibility to vary the input parameters and with 
the access to the output deconvolved data in the destination spectrum. Based on the output data 
one can tune the parameters. Search function calls Search1HighRes function with default values 
background_remove=true, decon_iterations=3, markov=true and aver_window=3.- pointer to the 
vector of source spectrum.



Example 17 – script Search1_hr1.c: Example 18 – script Search1_hr2.c:

Figure 33 One-dimensional spectrum with 
found peaks denoted by markers, 3 
iterations steps in the deconvolution

Figure 34 One-dimensional spectrum with 
found peaks denoted by markers, 8 
iterations steps in the deconvolution



Example 19 – script Search1_hr3.c:

Example 20 – script Search1_hr4.c: Example 21 – script Search1_hr5.c:

Figure 35 Influence of number of iterations (3-
red, 10-blue, 100- green, 1000-magenta), 
sigma=8, smoothing width=3

Figure 36 Influence of sigma (3-red, 8-blue, 20-
green, 43-magenta), num. iter.=10, sm. width=3

Figure 37 Influence smoothing width (0-red, 3-blue, 
7- green, 20-magenta), num. iter.=10, sigma=8

13

12

15

21

26

22

8

4

41

26

Sigma

98910

9549

8528

7407

4916

4825

3304

3103

1622

1181

PositionPeak #

Table 4 Positions and sigma of peaks in the 
following examples
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Possible new TSpectrum peak searching method:

Sigma range peak searching algorithm

• the proposed algorithm is to some extent robust to the variations of sigma parameter. 

• however, for large scale of the range of sigma and for poorly resolved peaks this algorithm
fails to work properly.  

• if we knew how the sigma changes in dependence on position we could set up the response 
matrix and employ the algorithm like Deconvolution1Unfolding 

• usually this is not the case and therefore we have simultaneously identify peaks and to adjust their 
sigma



Outline of the algorithm

For every  sigma the algorithm comprises two deconvolutions. The principle of the method is as 
follows: 

a. For                 up to            1iσ σ= 2σ
b. We set up the matrix of response functions (Gaussians) according to Figure 38. All

peaks have the same             . The columns of the matrix are mutually shifted by 
one position. We carry out the Gold deconvolution of the investigated spectrum. 

σ σ= i

Figure 38 Response matrix consisting of Gaussian functions with the same         σ



c. In the deconvolved spectrum, we find local maxima higher than given threshold value
and include them into the list of 1-st level candidate peaks.

d. Next, we set up the matrix of the response functions for the 2-nd level deconvolution. 
There exist three groups of positions:

-positions where the 1-st level candidate peaks were localized. Here we generate
response (Gaussian) with        iσ

-positions where the 2-nd level candidate peaks were localized in the previous steps
(see next step).  For each such a position, we generate the peak with  

the recorded        
1 k iσ σ σ≤ <

kσ
-for remaining free positions where no candidate peaks were registered, we have 
empirically found that the most suitable functions are the block functions with the
width           from the appropriate channel3 iσ±

The situation for one 2-nd level candidate peak in position        with              and for
one 1-st level candidate peak in the position        (     ) is depicted in Figure 39. We
carry out the 2-nd level Gold deconvolution.

2j kσ
1j iσ

e. Further, in the deconvolved spectrum we find the local maxima greater than given
threshold value. 

We scan the list of the 2-nd level candidate peaks:
- if in a position from this list there is not local maximum in the deconvolved

spectrum, we erase the candidate peak from the list.
We scan the list of the 1-st  level candidate peak
- if in a position from this list there is the local maximum in the deconvolved   

spectrum we transfer it to the list of the 2-nd level candidate peaks. 



Figure 39 Example of response matrix consisting of block functions and Gaussians with 
different     σ

f. Finally peaks that remained in the list of the 2-nd level candidate peaks are identified
as found peaks with recorded positions and         σ

• the method is rather complex as we have to repeat two deconvolutions for the whole
range of 

• in what follows we illustrate in detail practical aspects and steps during the peak
identification. The original noisy spectrum to be processed is shown in Figure 40. The    
of peaks included in the spectrum varies in the range 3 to 43. It contains 10 peaks with
some of them positioned very close to each other.

σ

σ

• as the SRS algorithm is based on the deconvolution in the first step we need to remove
background (Figure 41). 



Figure 40 Noisy spectrum containing 10 peaks of 
rather different widths

Figure 41 Spectrum from  Figure 40 after
background elimination

• at every position, we have to expect any peak from the given   range (3, 43). To
confine the possible combinations of positions and     we generated inverted positive
SSD of the spectrum for every     from the range.   

• we get matrix shown in next Figure. We consider only the combinations with non-zero
values in the matrix. 

σ
σ

σ

• the SRS algorithm is based on two successive deconvolutions. In the first level
deconvolution, we look for peak candidates. We changed     from 3 up to 43. 

• for every      we generated response matrix and subsequently we deconvolved spectrum
from Figure 41. Again, we arranged the results in the form of matrix given in Figure 43.

σ
σ



Figure 42 Matrix of inverted positive SSD
Figure 43 Matrix composed of spectra 
after first level deconvolution 

• successively according to the above-given algorithm from these data, we pick up the
candidates for peaks, construct the appropriate response matrices and deconvolve
again the spectrum from Figure 41. 

• the evolution of the result for increasing     is shown in Figure 44.

• from the last row of the matrix from Figure 44, which are in fact spikes, we can identify
(applying threshold parameter) the positions of peaks. The found peaks (denoted by
markers with channel numbers) and the original spectrum are shown in Figure 45. 

σ



Figure 44 Matrix composed of spectra after 
second level deconvolutions

Figure 45 Original spectrum with found 
peaks denoted by markers

• in Table 5 we present the result of generated peaks and estimated parameters. In 
addition to the peak position the algorithm estimates even the sigma of peaks. It is able
to recognize also very closely positioned peaks. 

• however, the estimate of the parameters is in some cases rather inaccurate mainly in
poorly separated peaks of the spectrum. The problem is very complex and sometimes
it is very difficult to decide whether a lobe represents two, eventually more, close
positioned narrow peaks or one wide peak.

•the algorithm is rather complex and thus time consuming 



990/12989/1310

952/12954/129

853/16852/158

742/22740/217

487/27491/246

485/23482/225

330/7330/84

309/4310/43

157/26162/412

119/23118/261

Estimated peaks (position/sigma)Generated peaks (position/sigma) Peak #

Table 5 Results of the estimation of peaks in spectrum shown in Figure 45



Fitting
Goal: to estimate simultaneously peak shape parameters in spectra with large number of 
peaks

•peaks can be fitted separately, each peak (or multiplets) in a region or together all peaks in a 
spectrum. To fit separately each peak one needs to determine the fitted region. However it can 
happen that the regions of neighboring peaks are overlapping. Then the results of fitting are very 
poor. On the other hand, when fitting together all peaks found in a  spectrum, one needs to have a 
method that is  stable (converges) and fast enough to carry out fitting in reasonable time 
•we have implemented the nonsymmetrical semiempirical peak shape function [1]
•it contains the symmetrical Gaussian as well as nonsymmetrical terms.
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where T and S are relative amplitudes and B is slope.

•algorithm without matrix inversion (AWMI) allows fitting tens, hundreds of peaks simultaneously 
that represent sometimes thousands of parameters [2], [6]. 



const char *TSpectrum::Fit1Awmi(float *source, TSpectrumOneDimFit * p, int size) 

Function 9:

This function fits the source spectrum using AWMI algorithm. The calling program should fill in 
input parameters of the TSpectrumOneDimFit class. The fitted parameters are written into class 
pointed by   TSpectrumOneDimFit class pointer and fitted data are written into source spectrum.

Parameters
•source - pointer to the vector of source spectrum
•p-pointer to the TSpectrumOneDimFit class
•size - length of source spectrum



class TSpectrumOneDimFit{
public:   int number_of_peaks;       //input parameter, should be>0   
int number_of_iterations;                //input parameter, should be >0   
int xmin;                                         //first fitted channel
int xmax;                                        //last fitted channel  
double alpha;                                    //convergence coefficient, input parameter, it should be positive number and <=1   
double chi;                                        //here the function returns resulting chi square   
int statistic_type;                            //type of statistics, possible values FIT1_OPTIM_CHI_COUNTS (chi square statistics with

// counts as weighting coefficients), FIT1_OPTIM_CHI_FUNC_VALUES (chi square statistics
//with function values as weighting coefficients [3]),FIT1_OPTIM_MAX_LIKELIHOOD [4]   

int alpha_optim;                              //optimization of convergence coefficients, possible values FIT1_ALPHA_HALVING,   
//FIT1_ALPHA_OPTIMALl  

int power;                                      //possible values FIT1_FIT_POWER2,4,6,8,10,12 (applies only for awmi algorithm)
int fit_taylor;                                  //order of Taylor expansion, possible values FIT1_TAYLOR_ORDER_FIRST,  

//FIT1_TAYLOR_ORDER_SECOND (applies only for awmi algorithm) 
double position_init[MAX_NUMBER_OF_PEAKS1];    //initial values of peaks positions, input parameters   double 
position_calc[MAX_NUMBER_OF_PEAKS1];              //calculated values of fitted positions, output parameters   double 
position_err[MAX_NUMBER_OF_PEAKS1];                //position errors   
bool fix_position[MAX_NUMBER_OF_PEAKS1];       //logical vector which allows to fix appropriate positions (not fit). However they 

//are present in the estimated functional   double 
amp_init[MAX_NUMBER_OF_PEAKS1];                     //initial values of peaks amplitudes, input parameters   double 
amp_calc[MAX_NUMBER_OF_PEAKS1];                   //calculated values of fitted amplitudes, output parameters   double 
amp_err[MAX_NUMBER_OF_PEAKS1];                     //amplitude errors   
bool fix_amp[MAX_NUMBER_OF_PEAKS1];            //logical vector which allows to fix appropriate amplitudes (not fit). However 

//they are present in the estimated functional   
double area[MAX_NUMBER_OF_PEAKS1];                //calculated areas of peaks   
double area_err[MAX_NUMBER_OF_PEAKS1];          //errors of peak areas   
double sigma_init;                               //sigma parameter, meaning analogical to the above given parameters   
double sigma_calc;   
double sigma_err;  
bool fix_sigma;   
double t_init, double t_calc,  double t_err,  bool fix_t;   
double b_init, double b_calc,   double b_err,   bool fix_b;
double s_init, double s_calc,  double s_err,   bool fix_s;
double a0_init;   //backgroud is estimated as a0+a1*x+a2*x*x
double a0_calc,   double a0_err,   bool fix_a0, double a1_ini,   double a1_calc,   double a1_err,   bool fix_a1;  
double a2 init,   double a2 calc,   double a2 err,   bool fix a2;};



Example 22 – script Fit1_awmi.c:

Figure 46 Original spectrum (black line) and fitted spectrum using 
AWMI algorithm (red line) and number of iteration steps = 1000. 
Positions of fitted peaks are denoted by markers



Function 10:

const char* Fit1Stiefel(float *source, TSpectrumOneDimFit * p, int size) 

This function fits the source spectrum using Stiefel-Hestens method [5]. The calling program 
should fill in input parameters of the TSpectrumOneDimFit class. The fitted parameters are 
written into class pointed by   TSpectrumOneDimFit class pointer and fitted data are written into 
source spectrum. 

Parameters
•source - pointer to the vector of source spectrum
•p-pointer to the TSpectrumOneDimFit class (see Fit1Awmi function)
•size - length of source spectrum



Example 23 – script Fit1_stiefel.c:

Figure 47 Original spectrum (black line) and fitted spectrum using 
Stiefel-Hestens method (red line) and number of iteration steps = 100. 
Positions of fitted peaks are denoted by markers

•converges faster than AWMI method
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Possible modifications:
•extend the fitting algorithms for the possibility to fit peaks with different sigma



Transform methods
Goal: to analyze experimental data using orthogonal transforms

•orthogonal transforms can be successfully used for the processing of nuclear spectra  
•they can be used to remove high frequency noise, to increase signal-to-background ratio as well 
as to enhance low intensity components [1], to carry out e.g. Fourier analysis etc. 
•we have implemented the function for the calculation of the commonly used orthogonal transforms 
as well as functions for the filtration and enhancement of experimental spectra

Function 11:

const char *TSpectrum::Transform1(const float *source, float *dest, int size, int type, 
int direction, int degree) 

This function transforms the source spectrum according to the given input parameters. 
Transformed data are written into dest spectrum. 

Parameters
•source - pointer to the vector of source spectrum. Its length should be equal to the “size”
parameter except for inverse FOURIER, FOUR-WALSH, FOUR-HAAR transforms. These need 
“2*size” length to supply real and imaginary coefficients. 
•dest-pointer to the vector of dest data, its length should be equal to the “size” parameter except for 
direct FOURIER, FOUR-WALSH, FOUR-HAAR. These need “2*size” length to store real and 
imaginary coefficients 
•size – basic length of source and dest spectra (should be power of 2)



•type-type of transform
Classic transforms:

TRANSFORM1_HAAR 
TRANSFORM1_WALSH 
TRANSFORM1_COS 
TRANSFORM1_SIN 
TRANSFORM1_FOURIER 
TRANSFORM1_HARTLEY 

Mixed transforms:
TRANSFORM1_FOURIER_WALSH 
TRANSFORM1_FOURIER_HAAR 
TRANSFORM1_WALSH_HAAR 
TRANSFORM1_COS_WALSH 
TRANSFORM1_COS_HAAR 
TRANSFORM1_SIN_WALSH 
TRANSFORM1_SIN_HAAR 

•direction-transform direction (forward, inverse)
TRANSFORM1_FORWARD 
TRANSFORM1_INVERSE 

•degree-applies only for mixed transforms [2], [3], [4], range  1size −20, log



Function 12:

const char *TSpectrum::Filter1Zonal(const float *source, float *dest, int size, int type, int
degree, int xmin, int xmax, float filter_coeff) 

This function transforms the source spectrum. The calling program should fill in input 
parameters. Then it sets transformed coefficients in the given region (xmin, xmax) to the given 
filter_coeff and transforms it back. Filtered data are written into dest spectrum. 

Parameters
•source, dest, size, type, degree – meaning is the same like in Transform1 function
•xmin-low limit of filtered region
•xmax-high limit of filtered region
•filter_coeff-value which is set in filtered region 

Function 13:

const char *TSpectrum::Enhance1(const float *source, float *dest, int size, int type, int
degree, int xmin, int xmax, float enhance_coeff) 

Parameters
•source, dest, size, type, degree – meaning is the same like in Transform1 function
•xmin-low limit of enhanced region
•xmax-high limit of enhanced region
•enhance_coeff-value by which the coefficients in enhanced region are multiplied 

This function transforms the source spectrum. The calling program should fill in input 
parameters. Then it multiplies transformed coefficients in the given region (xmin, xmax) by the 
given enhance_coeff and transforms it back . Processed data are written into dest spectrum. 



Example 24 – script Transform1.c: Example 25 – script Transform2.c:

Example 26 – script Transform3.c: Example 27 – script Transform4.c:

Figure 48 Original gamma-ray spectrum Figure 49 Transformed spectrum from Figure 48 
using Cosine transform

Figure 50 Original spectrum (black line) and filtered 
spectrum (red line) using Cosine transform and 
zonal filtration (channels 2048-4095 were set to 0) 

Figure 51 Original spectrum (black line) and 
enhanced spectrum (red line) using Cosine 
transform (channels 0-1024 were multiplied by 2) 
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Possible extensions to potential TSpectrum2, TSpectrum3 classes:
Background estimation examples:

Figure 52 Original two-dimensional gamma-X-
ray spectrum 

Figure 53 Spectrum from Figure 52 after 
background elimination

Figure 54 Original three-dimensional gamma-
gamma-gamma-ray spectrum 

Figure 55 Spectrum from Figure 54 after 
background elimination



Deconvolution:

Figure 56 Part of original experimental two-
dimensional gamma-gamma-ray coincidence 
spectrum

Figure 57 Spectrum from Figure 56 after boosted
Gold deconvolution 

Figure 58 Three-dimensional synthetic spectrum
Figure 59 Spectrum from Figure 58 after
boosted Gold deconvolution



Peak searching:

Fig 60 Result of the search using high resolution
method based on Gold deconvolution

Figure 61 Deconvolved spectrum of the data
from Figure 60

Figure 62 Three-dimensional gamma-gamma-
gamma-ray spectrum

Figure 63 Identified peaks in the spectrum from 
Figure 62



Fitting:

Figure 64 Two-dimensional gamma-gamma-ray 
spectrum with identified peaks

Figure 65 Fitted spectrum of the data from 
Figure 64

Figure 66 Three-dimensional gamma-gamma-
gamma-ray spectrum after background elimination

Figure 67 Fitted spectrum of the data from 
Figure 66



Conclusions

•we have presented a set of various methods of spectra analysis implemented in ROOT system
•presented methods are accompanied by a set of illustrative examples. File of example scripts will 
be available.
•we have suggested possible extensions and modifications of TSpectrum class as well as potential 
extensions to higher dimensions (TSpectum2, TSpectrum3 classes)
•the author would be grateful for any remarks, comments, suggestions concerning the material 
presented in this document
•the author would like to express thanks to Rene Brun for his assistance in the implementation of 
the TSpectrum class as well as for his help  and suggestions during the development of peak 
searching method

Additional information concerning the presented algorithms can be found at sites:
http://www.fu.sav.sk/nph/projects/DaqProvis
http://www.fu.sav.sk/nph/projects/ProcFunc


