
The STAR Grid Collector
and

TBitmapIndex

John Wu

Kurt Stockinger, Rene Brun, Philippe Canal – TBitmapIndex

Junmin Gu, Jerome Lauret, Arthur M. Poskanzer, Arie
Shoshani, Alexander Sim,

Wei-Ming Zhang – Grid Collector

Outline

• TBitmapIndex preview
— A preliminary integration of FastBit and ROOT

• Grid Collector for STAR
— Using FastBit as an efficient event filter

• FastBit searching technology
— A set of efficient compressed bitmap indices

TBitmapIndex: An attempt to introduce
FastBit to ROOT

Kurt Stockinger1, Kesheng Wu1, Rene Brun2,
Philippe Canal3

(1) Berkeley Lab, Berkeley, USA
(2) CERN, Geneva, Switzerland
(3) Fermi Lab, Batavia, USA

Current Status

• FastBit:
— Bitmap Index software developed at Berkeley Lab
— Includes very efficient bitmap compression algorithm

• Integrated bitmap indices to support:
— TTree::Draw
— TTree::Chain

• Each Index is currently stored in a binary file

Example - Build Index

// open ROOT-file
TFile f("data/root/data.root");
TTree *tree = (TTree*) f.Get("tree");

TBitmapIndex bitmapIndex;
char indexLocation[1024] = “/data/index/";

// build indices for all leaves of a tree
bitmapIndex.BuildIndex (tree, indexLocation);

// build index for two attributes “a1”, “a2” of a tree
bitmapIndex.BuildIndex(tree, "a1", indexLocation);
bitmapIndex.BuildIndex(tree, "a2", indexLocation);

Example - Tree::Draw with Index

// open ROOT-file
TFile f("data/root/data.root");
TTree *tree = (TTree*) f.Get("tree");

TBitmapIndex bitmapIndex;
bitmapIndex.Draw(tree, "a1:a2", "a1 < 200 && a2 > 700");

Performance Measurements

• Compare performance of TTreeFormula with
TBitmapIndex::EvaluateQuery

• Do not include time for drawing histograms
• Run multi-dimensional queries (cuts with multiple

predicates)

Experiments With BaBar Data

• Software/Hardware:
— Bitmap Index Software is implemented in C++
— Tests carried out on:

• Linux CentOS
• 2.8 GHz Intel Pentium 4 with 1 GB RAM
• Hardware RAID with SCSI disk

• Data:
— 7.6 million records with ~100 attributes each
— Babar data set:

• Bitmap Indices (FastBit):
— 10 out of ~100 attributes
— 1000 equality-encoded bins
— 100 range-encoded bins

Size of Compressed Bitmap Indices

Total size of all 10 attributes

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

Base data EE-BMI RE-BMI

Si
ze

 [b
yt

es
]

EE-BMI: equality-encoded bitmap index
RE-BMI: range-encoded bitmap index

Query Performance -
TTreeFormula vs. Bitmap Indices
1-Dimensional Queries

0.1

1

10

0.00001 0.0001 0.001 0.01 0.1 1

Query box

Ti
m

e
[s

ec
]

Bitmap indices 10X faster than
TTreeFormula

5-Dimensional Queries

0.1

1

10

100

0.00001 0.0001 0.001 0.01 0.1 1

Query box

Ti
m

e
[s

ec
]

10-Dimensional Queries

1

10

100

0.00001 0.0001 0.001 0.01 0.1 1

Query box

Ti
m

e
[s

ec
]

TTreeFormula BMI-EE BMI-RE

Network Flow Analysis: Another Example

• IDS log shows
— Jul 28 17:19:56 AddressScan 221.207.14.164 has

scanned 19 hosts (62320/tcp)
— Jul 28 19:19:56 AddressScan 221.207.14.88 has

scanned 19 hosts (62320/tcp)
• Using FastBit/ROOT to explore what else might be going

on

• Queries prepared by Scott Campbell. More details at
http://www.nersc.gov/~scottc/papers/ROOT/rootuse.prod.html

See the Scans from the Two Hosts

• Query: select ts/(60*60*24)-12843, IPR_C, IPR_D where
IPS_A=211 and IPS_B=207 and IPS_C=14 and IPS_D in (88, 164)

• Picture: scatter plot (dots) of the three selected variables
• Two lines indicating two sets of slow scans

Are There More Scans?

• Query: select ts/(60*60*24)-12843, IPR_C, IPR_D where
IPS_A=211 and IPS_B=207

• More scans from the same subnet

Who Is Doing It?

• Query: select IPS_C, IPS_D where IPS_A==211 and IPS_B==207
• Picture: the histogram of the IPS_C and IPS_D
• Five IP addresses started most of the scans!

Grid Collector

Put FastBit and SRM together to improve the
efficiency of STAR analysis jobs

http://www.star.bnl.gov/

Design Goals of Grid Collector

Goals
Make scientific analysis more productive by
• Specifying events of interest using meaningful physical

quantities
— numberOfPrimaryTracks > 1000 AND SumOfPt > 20

• Reading only events selected
• Automating the management of distributed files and disks

Practical considerations
• Working in the existing analysis framework
• Overhead should be insignificant
• Efficient for finding a few events (e.g., rare events) as well

as a large number of events (e.g., for statistical analysis)

Using FastBit to Build STAR Event Catalog

• STAR data is organized into several levels
• The Event Catalog indexes all tags but only maintains

references to other levels

RAW DATA

Event Summary

Analysis Object

Tags

5 MB

1 KB

Levels of STAR data

100 KB

1 MB

Event Catalog
MSS

MSS

MSS

Key Steps of Analysis Process

1. Locate the files containing the events of interest
– FastBit Event Catalog to associate events with files
– File & replica catalogs for locations of files

2. Prepare disk space and transfer
– Storage Resource Managers (SRMs):

– Prepare disk space for the files
– Transfer the files to the disks from HPSS
– Recover from HPSS and network transfer failures

3. Read the events of interest from files
– Event Iterator with fast forward capability using

information from the Event Catalog
4. Remove the files

– SRMs perform garbage collection

Grid Collector Speeds up Analyses

• Legend
— Selectivity: fraction of events selected for an analysis
— Speedup = ratio of time to read events without GC and with GC
— Speedup = 1: speed of the existing system (without GC)

• Results
— When searching for rare events, say, selecting one event out of 1000

(selectivity = 0.001), using GC is 20 to 50 times faster
— Even using GC to read 1/2 of events, speedup > 1.5

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
selectivity

sp
ee

du
p

Sample 1

Sample 2

Sample 3

1

10

100

1000

0.00001 0.0001 0.001 0.01 0.1 1
selectivity

sp
ee

du
p

Sample 1

Sample 2

Sample 3

less selective more selective

Grid Collector Facilitates Rare-Event Analyses

• Searching for anti-3He
• Lee Barnby, Birmingham, UK
• Previous studies identified collision

events that possibly contain anti-
3He, need further analysis

• Searching for strangelet
• Aihong Tang, BNL
• Previous studies identified

events that behave close to
strangelets, need further
investigation

• Without Grid Collector, one has to retrieve many files from mass
storage systems and scan them for the wanted events – may take weeks
or months, no one wants to actually do it

• With Grid Collector, both jobs completed within a day

FastBit

A compressed bitmap indexing technology for
efficient searching of read-only data

http://sdm.lbl.gov/fastbit

2 < A < 5

Basic Bitmap Index

• First commercial version
— Model 204, P. O’Neil, 1987

• Easy to build: faster than building B-
trees

• Efficient to query: only bitwise logical
operations
— A < 2 b0 OR b1
— 2<A<5 b3 OR b4

• Efficient for multi-dimensional
queries
— Use bitwise operations to combine

the partial results
• Size: one bit per distinct value per

object
— Definition: Cardinality ==

number of distinct values
— Compact for low cardinality

attributes only, say, < 100
— Need to control size for high

cardinality attributes

Data
values

0
1
5
3
1
2
0
4
1

1
0
0
0
0
0
1
0
0

0
1
0
0
1
0
0
0
1

0
0
0
0
0
1
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
1
0

0
0
1
0
0
0
0
0
0

=0 =1 =2 =3 =4 =5

b0 b1 b2 b3 b4 b5

A < 2

The Special Compression Method in FastBit
Is Compute-Efficient

10000000000000000000011100000000000000000000000000000……………….00000000000000000000000000000001111111111111111111111111

Example: 2015 bits

Main Idea: Use run-length-encoding, but..
group bits into 31-bit groups

Encode each group using one word

31 bits Count=63 (31 bits) 31 bits

31 bits 31 bits…31 bits

Merge neighboring groups with identical bits

• Name: Word-Aligned Hybrid (WAH) code
• Key features: WAH is compute-efficient because it

Uses the run-length encoding (simple)
Allows operations directly on compressed bitmaps
Never breaks any words into smaller pieces during operations

Performance on Multi-Attribute Range Queries

• WAH compressed indexes are 10X faster than DBMS,
5X faster than our own version of BBC
• Based on 12 most queried attributes from STAR, average attribute

cardinality 222,000

2-attribute queries 5-attribute queries

Summary / Future Work

• We integrated bitmap indices into ROOT to support:
— TTree::Draw
— TChain::Draw

• Using bitmap index speeds data selection by up to 10X
— With approximate answers of 0.1-1% error the performance

improvement is up to a factor of 30

• Bitmap indices are also used successfully in STAR as a
form of Event Index to speed event access

• Future work:
— Tighter integration with ROOT to provide more functionality
— Store bitmap indices in ROOT files
— Integrate with PROOF to support parallel evaluation

