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o Thehistory of-Particle Physics

® Particle physicsis the study of the most
fundamental structure of matter.

® It has had along history:
2 600BC: Greeks, atom
2 1000-1500: Alchemists, elements
= 1800's. Atomsrevisited
= Early 1900’s: structure of nucleus
= Mid 1900’ s. mesons/muons/neutrinoy ...
= Late 1900’ s: quarks/intermediate bosons
== Now: What next?
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Greek Atomic Theory

440 BC, Leucippus of Miletus

+ Democritus of Abdera

All matter made of atoms
Atoms not divisible

Atoms not touching (vacuum
between!)

Atoms completely solid, no
internal structure

Atoms have different size,
shape
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Next Developments

® Atomic Theory, opposed by Archimedes,
largely forgotten until 1800.

® | n meantime, understanding of existence of
elements (Gold, Silver, Copper, lron, Lead,
Tin, Mercury, Sulfur, Carbon)

® Understanding of “reversibility” (of
chemical reactions) (Could repeatedly
oxldize and reduce the same material, re-
smelt).
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Development of New Atomic T'heory

® John Dalton, 1803

® Elements were different because thelr atoms
were different

® All atoms for an el ement were identical

® Chemical compounds were formed by
making combinations of atoms of elements,
In ratios of small numbers

® Chemical reactions involve rearrangement
of the atoms of the compounds
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Feynman on-‘Atomic Theory

® "If in some cataclysm, all of scientific knowledge wereto
be destroyed, and only one sentence passed on to the next
generations of creatures, what statement would contain the
most information in the fewest words? | believeit isthe
[atomic hypothesis/ (or the atomic /fact/, or whatever you
wish to call it) that /all things are made of atoms - little
particles that move around in perpetual motion, attracting
each other when they are a little distance apart, but
repelling upon being squeezed into one another/. In that
one sentence, you will see, there is an enormous amount of
Information about the world, if just alittle imagination and
thinking are applied."

Richard Feynman
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Periodic Tables

® First organizations involved periodic
properties of the elements (Octaves, John
Newland, 1863)

® Then organized by atomic weight
(Mendeleev, 1864)

® No organization by atomic number as that
was not known
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Rutherford and Thompson Scattering
@

® Rutherford model of atom was a small nucleus
where charge was concentrated.

® Experimental results on scattering of alpha
particles very different than “plum pudding model
of Thompson”

® Rutherford also measured size of nucleus.
* Rutherford Scattering formula (two point
particles)

do T 2. ( fic f |
= - Z LF -
d cosf 2 KE) (1 —cos@)
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Various Scattering Potentials
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Bragg Scattering

Electric field of x-ray
photon accelerates
electrons of atom.
Electrons emit x-ray

of same wavelength
Constructive
Interference of waves
emitted by the various
atoms of crystal lattice
only at discrete angles

M= 2d sin(6)
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Characteristic X-Ray lines

K M shell
— o
.é“ 2 2 | shell
=
=
L—————\
\ v ¥ l+. shell
o Ko Ky
Awmn Wavelenoth A - .
avElEng Emission of Characteristic
Aray emission spectrum A-Fay spectral lines

Atomic electron de-exciting from one level to
another emits x-ray with characteristic frequency.
K, Islinefor decay from L to K shell.
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M oseley’s Experiment

Crystal for
Bragg Scattering —.
e .
| Sittocollimate |
emitted x-rays . raiOcr
Fig. 1. different elements

Location of “L” depends on wavelength of x-ray
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M oseley:s Result

High-Frequency Spectra of the Elements.

preee TR g0 *Moseley observed linear
5 = relationship between K,
7 frequency and N2 of

e element

e Atomic number had
B physical meaning
= - *Rutherford later

e s interpreted N as Charge
% of nucleus
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Fig. 3.
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Particle Discoveries of early 201" century

® x-ray (1895)
= Result of cathode ray impacting matter

® electrons (1897)
= orbit atomic nucleus

& proton (1911)
= nucleus of lightest atom

® neutron (1932)
= neutral constituent of the nucleus

® photon (1905)
= quantum of the electromagnetic field

JF, ICFA School Sept, 2005 15



. Antiproton production mechanism

PP >pppp with p = anti-proton
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. Chamberlain Discovery of Antiproton - 1955

T;/zkgzﬁm Bevatron protons energy = 6.2 GeV
/;;“' Momentum selection to 1.13 GeV/C
/ " C1 is veto cerenkov counter, set to have
. threshold at 3 = 0.78
o
b é‘—hewm C2 is differential cerenkov, 0.75< 3 <0.78
fﬂ? T feet
‘J;:‘:::?"\ -
:,,;/ ~
Kz
ﬁi\
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Cerenkov Effect

S
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TN P Surface of Mach cone
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Cerenkov effect same as supersonic shockwave. When
particle moves at speed faster than speed of light in medium
(1/n), generates Cerenkov radiation. Characteristic angle

Cos0.= 1/Bn for 3>1/n
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Threshold Cerenkov Counters(C1)

T.p

mirror
radiator (e.g. gas) K

= photomultiplier

8 = v/c = p/E ~1-M?%(2*p?)

I:n—l]=(nD—1]-Fz
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Refractive indices vary in the range of 1 to 2.
Material n YTh
glass 1.46 to 1.75 1.22 to 1.37
scintillator l4to 1.6 1.3t0 14
water 1.33 1.52
silica aerogel 1+(2t0 10 x 107) 2t05
pentane (at S.T.P.) 1+ 1.7 % 107 17
carbon dioxide (at S.T.P.) 1+43% 10~ 34
helium 1+ 33x% 10—5 123
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. Chamberlain Discovery of Antiproton

Light from
fast particle

. Light from
Giass 4 slow particle

S Trojectory

of particles

| AT

W
Fig. 6. Refraction of Cerenkov radiation at the interface between glass and air.
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Differential Cerenkov Counter (C2)

cylindrical mirror

radiator

K*.p

A Differential Cherenkov detector only gives a signal for particles with a certain range of 8
(corresponding, for a given momentum, to a given range in mass).
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0 Chamberlain Discovery of Antiproton

19539 O.CHAMBERLAIN

FAVAYAN
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Fig. 7. View of the velocity-selecting, Cerenkov counter,
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0 Chamberlain Discovery of Antiproton —timeof flight

(a}

ED: S1 and S2 separated

v
T by 12 meters:

Pion: C2*S1¥*S2*C1 |
Pbar: C2* S1* S2* C1(bar) ( 1 Pion o(t) =40 ns

Acc: S1*S2 ) Pbar §(t) =51 ns

204 e}
101
G T T T I.. T ] T 1 1 I_]' L
104 (<]
36 40 a4 48 52 56 6C
M Sec
Fig. 1o. (0) Histogram of times of flight for mesons; (b} histogram of times of flight

for antiprotons; (¢} apparent flight times for accidental coincidences.
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Hofstadter and | nternal Structure of Proton

5 Y I T
k] ; Fig. 9. Electron scattering from the proton at an incident energy of 158 MeV. Curve
E Electron scattering {a) shows the theoretical Mott curve for a spinless point proton. Curve (b} shows the
= .0"29 2 [, SRR P - from nyarogen e , i . . . : I '
L (188 Mev iab) theoretical curve for a point proton with a Dirac magnetic moment alone. Cwrve  (c)
WE : ex.10 J shows the theoretical behavior of a point proton having the anomalous Pauli contribu-
: | i tion in addition to the Dirac value of the magnetic moment. The deviation of the ex-
c = perimental curve from the Curve (c) represents the effect of form factors for the proton
3 : and indicates structure within the proton. The best fit in this figure indicates an rms
& radius close to 0.7 © 10" em.
9 |
] |
5 ) . .
Lo 188 MeV e-hyd el
boint oment. | * eV e-nyadrogen elastic scattering
1g72¢ = (gnomalous) ]l— S .
curve | sDatafalls below theoretical curve

expected for point particle. (Reminds you
@ | of Thompson scattering model where

el - \\\\ large angl e scattering was suppressed).

= B \\g\} *Indicates proton has structure, not a
|F3perurﬁen‘c:| curve - : A% .

point.

Jo ! Point Charge Theory
R S s dmf Data
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Forces

e Strong s s Electromagnetic mm

Gluons (8) m Photon \;\f \

vew
eew .
Quarks »
[ Atoms
’,ﬁ’ @ Light » o
Megans Chemistry
Baryons Electranics

Graviton ? Bosons (W,2)
"
P ﬁ—ﬂ B

’ .- _'
Salar system Neutron decay e
Galaxles 0 Beta radloactivity '
Black holes ) Meutrino Interactlons

- Burning of the gun

The parlicle drawkigs ane simple arlistic represantations
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o Conserved:Quantities

® Fundamental Physics Conservation Laws
@ Energy Conservation
@ Conservation of Momentum
#= Conservation of Angular Momentum
z= Pauli Exclusion Principle

® Universal Particle Physics Conservation Laws
= Baryon Number:
o 1/3 for quarks, -1/3 antiquarks

= Lepton Number
o Separate Number for each family of leptons.

=2 Charge Conservation

JF, ICFA School Sept, 2005
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8-fold Way (periodic.tablefor particles)

*Developed by Murray Gell-Mann and Y uval Ne'eman in 1961
*Plot hypercharge Y (baryon number + strangeness) versus 1sospin
*Observe patterns in multiplets

*Omega predicted and observed 1964

.1 . 3
Y Spin > Spin =

. n P - -

A(1232)

2*(138b)

=*(1530)

b Q- (1672D
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The quark modél

® 1964 Gell-Mann, Zweig
= there are three quarks and their antiparticles

Quark Up Down Strange
Charge +2/3 -1/3 -1/3

=2 each quark can carry one of three colors
e red blue

= antiquarks carry anticolor
anti-green
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. Thequark modé

= only colorless (“white’) combinations of quarks
and antiquarks can form particles

* 049

*4q

* NO others observed
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0 Quark confinement

® What holds quarks/antiquarks together?
= strong force
== acts between all “colored” objects
= short range
=2 Independent of distance

Ooe=

JF, ICFA School Sept, 2005
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Motivation for-idea of “quarks’

People noticed regular pattern of properties of different particles

Murray Gell-Mann and George Zweig propose in 1964 that mesons
and baryons are not elementary, but are composed of smaller
constituents:. Quarks

James Joyce, Finnegan’'s Wake:

u, d, and s quarks (up, down, strange)

11'/h()ese quarks have spin 1/2, and have fractional electric charge (2/3, -
3

Proton: uud

Neutron: udd

Pion: ud, uu - dd, du
Kaon: us, ds, sd, su

At the time, not clear if amathematical convenience, or reality

JF, ICFA School Sept, 2005
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. Mass Electric
Particle Symbol (MeV/c 2 ) Charge
Quarks
down d 5-15 -1/3
up u 2-8 2/3
strange s [100-300 -1/3
charm c 1300-1700 2/3
bottom b 4700-5300 -1/3
top t 175,000 2/3
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History of Discovery of Quarks

® SLAC, 1968
= Discovery of quarksin electron-proton scattering

® SLAC and Brookhaven, 1974
=2 Discovery of the charm quark in electron-positron
annihilation
® Fermilab, 1977
= Discovery of the bottom quark in proton collisions

® Fermilab, 1995

= Discovery of the top quark in proton-antiproton
annihiliation

JF, ICFA School Sept, 2005 33



® No one has actually
seen asingle bare
guark!

® |nstead, we observe
clusters of known
particles (Jets) which
travel in the direction
of the scattered quark

® These jets behave as if
they originated from a
spin 1/2 quark.
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UA1 di-j et measurement

| | I | [ I ey |1 |

B Sﬁy:mliicig :":ng 244 (1986). ;g B
1000 |- ;’ -
i 1986) I 1
n Loaaese) I
dcos(6 B B}
s | il o 1/r2 strong force
=00 Bl ¢ spin 1 gluon
' Il « pointlike quarks
, . Rutherford data
0 | | |
" 58 40 for cAu also

plotted.

Remember
do N az ( he )2 1 Rutherford
d cos S\Ecv/ (1—cos 6’)2 Scattering eqgn.

JF, ICFA School Sept, 2005



Leptons

Particle Symbol 2"""55 (MeV/c  [Electric
) Charge

electron e- 0.511 -1

muon H 105.7 -1

tau T 1784.1 -1

electron V. <7.3x10°6 0

neutrino

muon neutrino v , <0.27 0

tau neutrino V; <35 0
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Particle Symbol ?4;:3/(: °) ‘Elr?;:;ig
| | | l ‘
Gauge
Bosons
photon v O -
gluon 9 0 X
W-boson W89, 2001
Z-boson < 91,1700
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*All elementary
particles of
standard model
observed

(Except Higgs)

* v 0bserved in
2000

*Higgs will be
discovered at
LHC?
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Elementary particles

o H C t
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Detector Subsystems

Particle | Tracking| ECAL HCAL Muon
type

* =~

e _

N
| <
Jet —< 
\k

Et

miss
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. Collider  Detector CDFE. Functional Schematic

Muon detectors

Hadron calorimeter

Electromagnetic
salorimeter

K°— TT*TT, ...etc

14T
Solenoid
Silicon Drift
Detector Chamber
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