Physics of Particle Detection

Claus Grupen

University of Siegen http://www.hep.physik.uni-siegen.de/~grupen

B

Basic idea

Every effect of particles or radiation can be used as a working principle for a particle detector.

• Introduction

- Introduction
- Interaction of Charged Particles

- Introduction
- Interaction of Charged Particles
 - Ionisation, Scintillation, Cherenkov and Transition Radiation

- Introduction
- Interaction of Charged Particles
 - Ionisation, Scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and Nuclear Interactions

- Introduction
- Interaction of Charged Particles
 - Ionisation, Scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and Nuclear Interactions
- Interaction of Neutral Particles

- Introduction
- Interaction of Charged Particles
 - Ionisation, Scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and Nuclear Interactions
- Interaction of Neutral Particles
 - Photons: Photoelectric Effect, *Compton* Scattering, Pair Production

- Introduction
- Interaction of Charged Particles
 - Ionisation, Scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and Nuclear Interactions
- Interaction of Neutral Particles
 - Photons: Photoelectric Effect, *Compton* Scattering, Pair Production
 - Neutrons, Neutrinos

- Introduction
- Interaction of Charged Particles
 - Ionisation, Scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and Nuclear Interactions
- Interaction of Neutral Particles
 - Photons: Photoelectric Effect, *Compton* Scattering, Pair Production
 - Neutrons, Neutrinos
- Electromagnetic Cascades

- Introduction
- Interaction of Charged Particles
 - Ionisation, Scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and Nuclear Interactions
- Interaction of Neutral Particles
 - Photons: Photoelectric Effect, *Compton* Scattering, Pair Production
 - Neutrons, Neutrinos
- Electromagnetic Cascades
- Hadron Cascades

- Introduction
- Interaction of Charged Particles
 - Ionisation, Scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and Nuclear Interactions
- Interaction of Neutral Particles
 - Photons: Photoelectric Effect, *Compton* Scattering, Pair Production
 - Neutrons, Neutrinos
- Electromagnetic Cascades
- Hadron Cascades
- Examples of Particle Identification

- Introduction
- Interaction of Charged Particles
 - Ionisation, Scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and Nuclear Interactions
- Interaction of Neutral Particles
 - Photons: Photoelectric Effect, *Compton* Scattering, Pair Production
 - Neutrons, Neutrinos
- Electromagnetic Cascades
- Hadron Cascades
- Examples of Particle Identification
- Conclusions

• *Main methods of particle detectors:*

Introduction

- Main methods of particle detectors:
 - Detection and identification of particles with mass m_0 , charge z.

- *Main methods of particle detectors:*
 - Detection and identification of particles with mass m_0 , charge z.
 - Usually $z = \pm 1$ in elementary particle physics, but not in nuclear physics, heavy ion physics or cosmic rays.

- *Main methods of particle detectors:*
 - Detection and identification of particles with mass m_0 , charge z.
 - Usually $z = \pm 1$ in elementary particle physics, but not in nuclear physics, heavy ion physics or cosmic rays.

methods of particle identification:

- *Main methods of particle detectors:*
 - Detection and identification of particles with mass m_0 , charge z.
 - Usually $z = \pm 1$ in elementary particle physics, but not in nuclear physics, heavy ion physics or cosmic rays.

methods of particle identification:

• Measure the bending radius ρ in a magnetic field B $(\vec{p} \perp \vec{B})$:

$$\frac{mv^2}{\rho} = z \cdot e \cdot v \cdot B \implies \rho = \frac{p}{zeB} \propto \frac{\gamma m_0 \beta c}{z}$$

with p: momentum; $\beta = \frac{v}{c}$; $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$.

• Measure time of flight τ : $\beta \propto \frac{1}{\tau}$.

- Measure time of flight τ : $\beta \propto \frac{1}{\tau}$.
- Measure the ionisation energy loss:

$$\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{ion}} \propto \frac{z^2}{\beta^2} \ln(a\beta\gamma - \eta)$$

(a: material constant, η : density parameter).

- Measure time of flight τ : $\beta \propto \frac{1}{\tau}$.
- Measure the ionisation energy loss:

 $\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{ion}} \propto \frac{z^2}{\beta^2} \ln(a\beta\gamma - \eta)$

(a: material constant, η : density parameter).

• Measure the particle's energy in a calorimeter: $E^{\text{kin}} = (\gamma - 1)m_0c^2.$

- Measure time of flight τ : $\beta \propto \frac{1}{\tau}$.
- Measure the ionisation energy loss:

 $\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{ion}} \propto \frac{z^2}{\beta^2} \ln(a\beta\gamma - \eta)$

(a: material constant, η : density parameter).

- Measure the particle's energy in a calorimeter: $E^{\text{kin}} = (\gamma - 1)m_0c^2.$
- Measure the energy loss due to Cherenkov radiation: $\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Cherenkov}} \propto z^2 \cdot \sin^2 \Theta_C$ where $\Theta_C = \arccos \frac{1}{n\beta}$.

- Measure time of flight τ : $\beta \propto \frac{1}{\tau}$.
- Measure the ionisation energy loss:

 $\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{ion}} \propto \frac{z^2}{\beta^2} \ln(a\beta\gamma - \eta)$

(a: material constant, η : density parameter).

- Measure the particle's energy in a calorimeter: $E^{\text{kin}} = (\gamma - 1)m_0c^2.$
- Measure the energy loss due to Cherenkov radiation: $\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Cherenkov}} \propto z^2 \cdot \sin^2 \Theta_C$ where $\Theta_C = \arccos \frac{1}{n\beta}$.
- Measure the energy loss due to transition radiation: $\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{transition}} \propto z^2 \gamma.$

Charged Particles

Neutral Particles

Kinematics: a particle of mass m_0 and velocity $v = \beta c$ collides with an electron; maximum transferable energy:

$$E_{\max}^{\rm kin} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \frac{m_e}{m_0} + \left(\frac{m_e}{m_0}\right)^2} = \frac{2m_e p^2}{m_0^2 + m_e^2 + 2m_e E/c^2}$$

with E: total energy of the particle, $\gamma = \frac{E}{m_0 c^2}$.

Kinematics: a particle of mass m_0 and velocity $v = \beta c$ collides with an electron; maximum transferable energy:

$$E_{\max}^{\rm kin} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \frac{m_e}{m_0} + \left(\frac{m_e}{m_0}\right)^2} = \frac{2m_e p^2}{m_0^2 + m_e^2 + 2m_e E/c^2}$$

with E: total energy of the particle, $\gamma = \frac{E}{m_0 c^2}$. If $m >> m_0$ and $2\gamma \frac{m_e}{m_0} << 1 \Rightarrow E_{\text{max}}^{\text{kin}} = 2m_e c^2 \beta^2 \gamma^2$.

Kinematics: a particle of mass m_0 and velocity $v = \beta c$ collides with an electron; maximum transferable energy:

$$E_{\max}^{\rm kin} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \frac{m_e}{m_0} + \left(\frac{m_e}{m_0}\right)^2} = \frac{2m_e p^2}{m_0^2 + m_e^2 + 2m_e E/c^2}$$

with E: total energy of the particle, $\gamma = \frac{E}{m_0 c^2}$. If $m >> m_0$ and $2\gamma \frac{m_e}{m_0} << 1 \Rightarrow E_{\max}^{\min} = 2m_e c^2 \beta^2 \gamma^2$.

For relativistic particles ($E_{\rm kin} \approx E, E \approx pc$): $E_{\rm max} = \frac{E^2}{E + m_0 c^2 / 2m_e}$.

Kinematics: a particle of mass m_0 and velocity $v = \beta c$ collides with an electron; maximum transferable energy:

$$E_{\max}^{\min} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \frac{m_e}{m_0} + \left(\frac{m_e}{m_0}\right)^2} = \frac{2m_e p^2}{m_0^2 + m_e^2 + 2m_e E/c^2}$$

with E: total energy of the particle, $\gamma = \frac{E}{m_0 c^2}$. If $m >> m_0$ and $2\gamma \frac{m_e}{m_0} << 1 \Rightarrow E_{\max}^{\min} = 2m_e c^2 \beta^2 \gamma^2$.

For relativistic particles ($E_{\rm kin} \approx E, E \approx pc$): $E_{\rm max} = \frac{E^2}{E + m_0 c^2 / 2m_e}$.

Examples:

(a)
$$\mu - e$$
 - collision: $E_{\max} = \frac{E^2}{E+11}$ (*E* in GeV)
(b) if $m_0 = m_e$: $E_{\max}^{kin} = \frac{p^2}{m_e + E/c^2} = \frac{E^2 - m_e^2 c^4}{E + m_e c^2} = E - m_e c^2$

Simplified Version

Rutherford Scattering

$$\vec{F} = \frac{ze \cdot Ze}{r^2} \cdot \frac{\vec{r}}{r},$$

$$p_b = \int_{-\infty}^{\infty} F_b dt = \int_{-\infty}^{\infty} \frac{zZe^2}{r^2} \cdot \frac{b}{r} \cdot \frac{dx}{\beta c},$$

momentum transfer
$$p_b$$

target (Z, A)
impact parameter b
 φ
 Z x particle track \vec{p}

$$p_b = \frac{zZe^2}{\beta c} \int_{-\infty}^{\infty} \frac{b \, \mathrm{d}x}{(\sqrt{x^2 + b^2})^3}$$
$$= \frac{zZe^2}{\beta ch} \int_{-\infty}^{\infty} \frac{\mathrm{d}(x/b)}{(\sqrt{1 + (-/b)^2})^3} = \frac{2zZ}{\beta c}$$

$$= \frac{zZe^2}{\beta cb} \int_{-\infty} \frac{\mathrm{d}(x/b)}{(\sqrt{1+(x/b)^2})^3} = \frac{2zZe^2}{\beta cb}$$

$$\rightsquigarrow p_b = \frac{2r_e m_e c}{b\beta} zZ$$
 with $r_e = \frac{e^2}{m_e c^2}$.

Scattering Angle

$$\Theta = \frac{p_b}{p} = \frac{2zZe^2}{bc\beta} \cdot \frac{1}{p}$$

Scattering Angle

$$\Theta = \frac{p_b}{p} = \frac{2zZe^2}{bc\beta} \cdot \frac{1}{p}$$

Cross section for scattering into the solid angle: $d\Omega = \sin \Theta d\Theta \ d\varphi = -d \cos \Theta \ d\varphi$

with Θ : polar angle, φ azimuthal angle.

Scattering Angle

$$\Theta = \frac{p_b}{p} = \frac{2zZe^2}{bc\beta} \cdot \frac{1}{p}$$

Cross section for scattering into the solid angle: $d\Omega = \sin \Theta d\Theta \ d\varphi = -d \cos \Theta \ d\varphi$

with Θ : polar angle, φ azimuthal angle.

"Rutherford scattering":

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{z^2 Z^2}{4} r_e^2 \left(\frac{m_e c}{\beta p}\right)^2 \cdot \frac{1}{\sin^4 \Theta/2}.$$

Scattering of α -Particles on Gold

E. Rutherford Phil. Mag. 21 (1911) 669

H. Geiger, E. Marsden Phil. Mag. 25 (1913) 604

Multiple Scattering

 $\langle \Theta \rangle = 0$ p in MeV/c X_0 : radiation length

Multiple Scattering

 $\langle \Theta \rangle = 0$ p in MeV/c X_0 : radiation length

$$\sqrt{\langle \Theta^2 \rangle} = \Theta_{\text{plane}} = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{\frac{x}{X_0}} \left\{ 1 + 0.038 \ln \left(\frac{x}{X_0}\right) \right\}$$
$$\Theta_{\text{space}} = \sqrt{2}\Theta_{\text{plane}} = \sqrt{2}\Theta_0$$

Multiple Scattering

 $\langle \Theta \rangle = 0$ p in MeV/c X_0 : radiation length

$$\sqrt{\langle \Theta^2 \rangle} = \Theta_{\text{plane}} = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{\frac{x}{X_0}} \left\{ 1 + 0.038 \ln \left(\frac{x}{X_0}\right) \right\}$$
$$\Theta_{\text{space}} = \sqrt{2}\Theta_{\text{plane}} = \sqrt{2}\Theta_0$$

Projected angular distribution:

$$P(\Theta) d\Theta = \frac{1}{\sqrt{2\pi}\Theta_0} \exp\left\{-\frac{\Theta^2}{2\Theta_0^2}\right\} d\Theta$$

+ tail due to single, large angle Coulomb scattering.

Physics of Particle Detection – p.13/87

Scattering of α -particles on Gold

Electrons of 15.7 MeV on Au-foils

- < 5° dominated by multiple scattering
- > 15° dominated by single scattering

A.O. Hanson et al., Phys.Rev. 84 (1951) 634 R.O. Birkhoff, Handb.Phys. XXXIV (1958)

 $p_b = \frac{2r_e m_e c}{b\beta} z$ per target electron.

 $p_b = \frac{2r_e m_e c}{b\beta} z$ per target electron.

Energy transfer in the classical approximation:

$$\varepsilon = \frac{p_b^2}{2m_e} = \frac{2r_e^2 m_e c^2}{b^2 \beta^2} z^2.$$

 $p_b = \frac{2r_e m_e c}{b\beta} z$ per target electron.

Energy transfer in the classical approximation:

$$\varepsilon = \frac{p_b^2}{2m_e} = \frac{2r_e^2 m_e c^2}{b^2 \beta^2} z^2.$$

Interaction rate per (g/cm²), given the atomic cross section: $\phi(g^{-1} \text{ cm}^2) = \frac{N}{A} \cdot \sigma [\text{cm}^2 / \text{atom}]$ with *N*: *Avogadro's number*.

 $p_b = \frac{2r_e m_e c}{b\beta} z$ per target electron.

Energy transfer in the classical approximation:

$$\varepsilon = \frac{p_b^2}{2m_e} = \frac{2r_e^2 m_e c^2}{b^2 \beta^2} z^2.$$

Interaction rate per (g/cm²), given the atomic cross section: $\phi(g^{-1} \text{ cm}^2) = \frac{N}{A} \cdot \sigma [\text{cm}^2 / \text{atom}]$ [with N: Avogadro's number.

$$\phi(\varepsilon) \mathrm{d}\varepsilon = \frac{N}{A} \cdot \underbrace{2\pi b \, \mathrm{d}b} \cdot Z$$

area of an annulus with Z: electrons per target atom.

$$\varepsilon = f(b) \Rightarrow b^{2} = \frac{2r_{e}^{2}m_{e}c^{2}}{\beta^{2}}z^{2} \cdot \frac{1}{\varepsilon}.$$

$$\phi(\varepsilon)d\varepsilon = \frac{N}{A} \cdot Z \cdot 2\pi \cdot \underbrace{\frac{r_{e}^{2}m_{e}c^{2}}{\beta^{2}}z^{2}\frac{d\varepsilon}{\varepsilon^{2}}}_{b \ db} \propto \frac{1}{\varepsilon^{2}}.$$

$$\varepsilon = f(b) \Rightarrow b^{2} = \frac{2r_{e}^{2}m_{e}c^{2}}{\beta^{2}}z^{2} \cdot \frac{1}{\varepsilon}.$$

$$\phi(\varepsilon)d\varepsilon = \frac{N}{A} \cdot Z \cdot 2\pi \cdot \underbrace{\frac{r_{e}^{2}m_{e}c^{2}}{\beta^{2}}z^{2}\frac{d\varepsilon}{\varepsilon^{2}}}_{b \ db} \propto \frac{1}{\varepsilon^{2}}.$$

Energy loss:

$$-dE = \int_{0}^{\infty} \phi(\varepsilon) \cdot \varepsilon \, d\varepsilon \, dx = \int_{0}^{\infty} \frac{N}{A} \cdot 2\pi b \, db \cdot Z \cdot \varepsilon \, dx$$

$$\varepsilon = f(b) \Rightarrow b^{2} = \frac{2r_{e}^{2}m_{e}c^{2}}{\beta^{2}}z^{2} \cdot \frac{1}{\varepsilon}.$$

$$\phi(\varepsilon)d\varepsilon = \frac{N}{A} \cdot Z \cdot 2\pi \cdot \underbrace{\frac{r_{e}^{2}m_{e}c^{2}}{\beta^{2}}z^{2}\frac{d\varepsilon}{\varepsilon^{2}}}_{b \ db} \propto \frac{1}{\varepsilon^{2}}.$$

Energy loss:

$$-dE = \int_{0}^{\infty} \phi(\varepsilon) \cdot \varepsilon \, d\varepsilon \, dx = \int_{0}^{\infty} \frac{N}{A} \cdot 2\pi b \, db \cdot Z \cdot \varepsilon \, dx.$$

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{2\pi N}{A} \cdot Z \cdot \int_{0}^{\infty} \varepsilon b \, \mathrm{d}b = 2\pi \frac{Z \cdot N}{A} \cdot \frac{2r_e^2 m_e c^2}{\beta^2} z^2 \int_{0}^{\infty} \frac{\mathrm{d}b}{b}.$$
Problem: the integral is divergent at $b = 0$ and $b = \infty \dots$

b = 0: Assume $b_{\min} = \frac{h}{2p} = \frac{h}{2\gamma m_e \beta c}$ half the *de Broglie wavelength*.

b = 0: Assume $b_{\min} = \frac{h}{2p} = \frac{h}{2\gamma m_e \beta c}$ half the *de Broglie wavelength*.

 $b = \infty$: If the revolution time τ_r of the electron in the target atom is smaller than the interaction time τ_i the target looks neutral:

 $\tau_i = \frac{b_{\text{max}}}{v} \sqrt{1 - \beta^2}$ with $\sqrt{1 - \beta^2}$: Lorentz-contraction of the field at high velocities $\tau = \frac{1}{v} - \frac{h}{v} + \tau = \tau \rightarrow h = -\frac{\gamma h \beta c}{v + \beta c}$

 $\tau_r = \overline{\frac{1}{\nu_z \cdot Z} = \frac{h}{I}} \quad \tau_i = \tau_r \Rightarrow b_{\max} = \overline{\frac{\gamma h \beta c}{I}}$

b = 0: Assume $b_{\min} = \frac{h}{2p} = \frac{h}{2\gamma m_e \beta c}$ half the *de Broglie wavelength*.

 $b = \infty$: If the revolution time τ_r of the electron in the target atom is smaller than the interaction time τ_i the target looks neutral:

 $\tau_i = \frac{b_{\text{max}}}{v} \sqrt{1 - \beta^2}$ with $\sqrt{1 - \beta^2}$: *Lorentz*-contraction of the field at high velocities

$$\tau_r = \frac{1}{\nu_z \cdot Z} = \frac{h}{I} \quad \tau_i = \tau_r \Rightarrow b_{\max} = \frac{\gamma h \beta c}{I}$$

$$\sim -\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{2\pi ZN}{A} \frac{2r_e^2 m_e c^2}{\beta^2} z^2 \left[\ln \frac{2\gamma^2 \beta^2 m_e c^2}{I} - \underbrace{\eta}_{\text{screening effect}} \right]$$

Bethe-Bloch formula: exact treatment

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 2\pi \frac{ZN}{A} \frac{2r_e^2 m_e c^2}{\beta^2} z^2 \left[\frac{1}{2} \ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I^2} E_{\mathrm{max}}^{\mathrm{kin}} \right) - \beta^2 - \frac{\delta}{2} \right]$$

Bethe-Bloch formula: exact treatment

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 2\pi \frac{ZN}{A} \frac{2r_e^2 m_e c^2}{\beta^2} z^2 \left[\frac{1}{2} \ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I^2} E_{\mathrm{max}}^{\mathrm{kin}} \right) - \beta^2 - \frac{\delta}{2} \right]$$

Density correction: $\frac{\delta}{2} = \ln\left(\frac{\hbar\omega_p}{I}\right) + \ln(\beta\gamma) - \frac{1}{2}$ where $\hbar\omega_p = \sqrt{4\pi N_e r_e^3} \frac{m_e c^2}{\alpha}$ (plasma energy).

Bethe-Bloch formula: exact treatment

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 2\pi \frac{ZN}{A} \frac{2r_e^2 m_e c^2}{\beta^2} z^2 \left[\frac{1}{2} \ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I^2} E_{\mathrm{max}}^{\mathrm{kin}} \right) - \beta^2 - \frac{\delta}{2} \right]$$

Density correction: $\frac{\delta}{2} = \ln\left(\frac{\hbar\omega_p}{I}\right) + \ln(\beta\gamma) - \frac{1}{2}$ where $\hbar\omega_p = \sqrt{4\pi N_e r_e^3 \frac{m_e c^2}{\alpha}}$ (plasma energy).

- N_e : electron density of the absorbing material
- α : fine structure constant = $\frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{\hbar c}$
- ε_0 : permittivity of free space

Speed Limit

Deuteron Beam Scintillating in Air

α Tracks in a Micro Pattern Chamber

Proton and α **Ranging out**

U. Titt et al. NIM A 416 (1998) 85

Optical avalanche microdosimeter: demonstrates $\left(\frac{dE}{dx}\right)_{\alpha} >> \left(\frac{dE}{dx}\right)_{p}$ because $\frac{dE}{dx} \sim z^{2}$

 $E_{\rm p} = 5.0 \,\,{\rm MeV}$ with δ -ray $E_{\alpha} = 19 \,\,{\rm MeV}$ with δ -ray

Heavy Nuclei in Cosmic Rays

Ionisation density of relativistic heavy ions from cosmic radiation in nuclear emulsions

G. D. Rochester

Advancement of Science Dec. 1970, p.183-194

(ALEPH): Particle Identification with dE/dx

f Particle Detection – p.24/87

Bragg Curves

Bragg curves of heavy ions for medical applications

Kraft 1996 GSI Darmstadt

Heavy Ion Collision in STAR

$\pi \rightarrow \mu \rightarrow e$ decay chain

Energy transfer probability: $\phi(\varepsilon) = \frac{2\pi N e^4}{\frac{m_e v^2}{\xi/x}} \cdot \frac{Z}{A} \cdot \frac{1}{\varepsilon^2}$ for z = 1

with x: area density in g/cm² ($x = \text{density} \times \text{length}$). For 1 cm Ar and $\beta = 1 \Rightarrow \xi = 0.123$ keV.

Energy transfer probability: $\phi(\varepsilon) = \frac{2\pi N e^4}{\frac{m_e v^2}{\xi/x}} \cdot \frac{Z}{A} \cdot \frac{1}{\varepsilon^2}$ for z = 1

with x: area density in g/cm² ($x = \text{density} \times \text{length}$). For 1 cm Ar and $\beta = 1 \Rightarrow \xi = 0.123$ keV.

 $\Delta^{m.p.}$: most probable energy loss of a particle on traversing x Δ : actual energy loss on traversing x

$$\lambda = \frac{\Delta - \Delta^{\mathrm{m.p.}}}{\xi}$$

Energy transfer probability: $\phi(\varepsilon) = \frac{2\pi N e^4}{\frac{m_e v^2}{\xi/x}} \cdot \frac{Z}{A} \cdot \frac{1}{\varepsilon^2}$ for z = 1

with x: area density in g/cm² ($x = \text{density} \times \text{length}$). For 1 cm Ar and $\beta = 1 \Rightarrow \xi = 0.123$ keV.

 $\Delta^{\text{m.p.}}$: most probable energy loss of a particle on traversing x Δ : actual energy loss on traversing x

 $\lambda = \frac{\Delta - \Delta^{\mathrm{m.p.}}}{\epsilon}$

A good approximation for the energy loss distribution is $\Omega(\lambda) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\lambda + e^{-\lambda}\right)\right\}.$

Energy transfer probability: $\phi(\varepsilon) = \frac{2\pi N e^4}{\underbrace{m_e v^2}} \cdot \frac{Z}{A} \cdot \frac{1}{\varepsilon^2}$ for z = 1

with x: area density in g/cm² ($x = \text{density} \times \text{length}$). For 1 cm Ar and $\beta = 1 \Rightarrow \xi = 0.123 \text{ keV}$.

 $\Delta^{m.p.}$: most probable energy loss of a particle on traversing x Δ : actual energy loss on traversing x

 $\lambda = \frac{\Delta - \Delta^{\text{m.p.}}}{\underline{\boldsymbol{\zeta}}}$

A good approximation for the energy loss distribution is $\Omega(\lambda) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\lambda + e^{-\lambda}\right)\right\}.$

- This distribution is asymmetric due to close collisions with high energy transfers.
- Particularly important for gases and thin absorbers.
- In argon $(\beta \gamma = 4)$; $\Delta^{\text{m.p.}} = 1.2 \text{keV/cm}$; $\langle \Delta \rangle = 2.69 \text{ keV/cm}$.

Electrons in Ar/CH_4 (80 : 20), gap: 0.5 cm

Affholderbach et al. 1996

NIM A 410 (1998) 166

OPAL detector at LEP/CERN

Momentum: $\langle p \rangle = 0.465 \text{ GeV/c}$

CERN-PPE 94-49

• The energy loss in crystals depends on the angle of incidence with respect to the crystal orientation.

- The energy loss in crystals depends on the angle of incidence with respect to the crystal orientation.
- Particles can be channeled along certain crystal directions (with reduced energy loss).

- The energy loss in crystals depends on the angle of incidence with respect to the crystal orientation.
- Particles can be channeled along certain crystal directions (with reduced energy loss).
- There is a critical angle Ψ for channeling.

- The energy loss in crystals depends on the angle of incidence with respect to the crystal orientation.
- Particles can be channeled along certain crystal directions (with reduced energy loss).
- There is a critical angle Ψ for channeling.
- For protons in silicon (Z = 14, lattice spacing $d = 2.35 \cdot 10^{-10}$ m).

- The energy loss in crystals depends on the angle of incidence with respect to the crystal orientation.
- Particles can be channeled along certain crystal directions (with reduced energy loss).
- There is a critical angle Ψ for channeling.
- For protons in silicon (Z = 14, lattice spacing $d = 2.35 \cdot 10^{-10}$ m).
 - $\psi = 13 \frac{\mu \text{ rad}}{\sqrt{E[\text{TeV}]}} \text{ along the direction of body-diagonals } \langle 111 \rangle.$
Channeling (1)

- The energy loss in crystals depends on the angle of incidence with respect to the crystal orientation.
- Particles can be channeled along certain crystal directions (with reduced energy loss).
- There is a critical angle Ψ for channeling.
- For protons in silicon (Z = 14, lattice spacing $d = 2.35 \cdot 10^{-10}$ m).
 - $\psi = 13 \frac{\mu \operatorname{rad}}{\sqrt{E[\operatorname{TeV}]}} \text{ along the direction of body-diagonals } \langle 111 \rangle.$
 - $\psi = 5 \frac{\mu \text{ rad}}{\sqrt{E[\text{TeV}]}}$ for planar channeling $\langle 110 \rangle$ (face diagonals).

Channeling (1)

- The energy loss in crystals depends on the angle of incidence with respect to the crystal orientation.
- Particles can be channeled along certain crystal directions (with reduced energy loss).
- There is a critical angle Ψ for channeling.
- For protons in silicon (Z = 14, lattice spacing $d = 2.35 \cdot 10^{-10}$ m).
 - $\psi = 13 \frac{\mu \text{ rad}}{\sqrt{E[\text{TeV}]}}$ along the direction of body-diagonals $\langle 111 \rangle$.
 - $\psi = 5 \frac{\mu \text{ rad}}{\sqrt{E[\text{TeV}]}}$ for planar channeling $\langle 110 \rangle$ (face diagonals).
- Application: beam steering with bent crystals.

Channeling (2)

• Inorganic crystals:

Effect of the lattice, electron-hole pair creation, excitation, de-excitation at activator centers. $NaI(Tl), CsI(Tl), BaF_2, BGO, \ldots$

• Inorganic crystals:

Effect of the lattice, electron-hole pair creation, excitation, de-excitation at activator centers. NaI(Tl), CsI(Tl), BaF₂, BGO, ...

• Organic liquid or plastic: three components:

• Inorganic crystals:

Effect of the lattice, electron-hole pair creation, excitation, de-excitation at activator centers. NaI(Tl), CsI(Tl), BaF₂, BGO, ...

- Organic liquid or plastic: three components:
 - *Primary scintillator*: anthracene: $C_{14}H_{10}$, naphtalene: $C_{10}H_8, \ldots$

• Inorganic crystals:

Effect of the lattice, electron-hole pair creation, excitation, de-excitation at activator centers. NaI(Tl), CsI(Tl), BaF₂, BGO, ...

- Organic liquid or plastic: three components:
 - *Primary scintillator*: anthracene: $C_{14}H_{10}$, naphtalene: $C_{10}H_8$, ...
 - *Wavelength shifter*: POPOP*, BBQ[#], ...

• Inorganic crystals:

Effect of the lattice, electron-hole pair creation, excitation, de-excitation at activator centers. NaI(Tl), CsI(Tl), BaF₂, BGO, ...

- **Organic liquid or plastic**: three components:
 - *Primary scintillator*: anthracene: $C_{14}H_{10}$, naphtalene: $C_{10}H_8, \ldots$
 - *Wavelength shifter*: POPOP*, BBQ[#], ...
 - *Base material*: mineral oil, PMMA⁺, ...

• Inorganic crystals:

Effect of the lattice, electron-hole pair creation, excitation, de-excitation at activator centers. NaI(Tl), CsI(Tl), BaF₂, BGO, ...

- Organic liquid or plastic: three components:
 - *Primary scintillator*: anthracene: $C_{14}H_{10}$, naphtalene: $C_{10}H_8$, ...
 - *Wavelength shifter*: POPOP*, BBQ[#], ...
 - *Base material*: mineral oil, PMMA⁺, ...
- Gases:

Energy loss by excitation, recombination. Xe, Kr, Ar, N_2 , ...

• Inorganic crystals:

Effect of the lattice, electron-hole pair creation, excitation, de-excitation at activator centers. NaI(Tl), CsI(Tl), BaF₂, BGO, ...

- Organic liquid or plastic: three components:
 - *Primary scintillator*: anthracene: $C_{14}H_{10}$, naphtalene: $C_{10}H_8$, ...
 - *Wavelength shifter*: POPOP*, BBQ[#], ...
 - *Base material*: mineral oil, PMMA⁺, ...
- Gases:

Energy loss by excitation, recombination. Xe, Kr, Ar, N_2 , ...

*: $C_{24}H_{16}N_2O_2$: 1.4-Bis-(2-[5-phenyloxa-zolile])-benzene #: $C_{27}H_{19}NO$: 2.5-di(4-biphenyl)-oxasole +: $C_5H_8O_2$: PMMA-polymethylmethacralate

Birks formula

Birk's formula for organic scintillators: light yield $N = N_0 \cdot \frac{dE/dx}{1+k_B \cdot dE/dx}$.

E

Birks formula

Birk's formula for organic scintillators: light yield $N = N_0 \cdot \frac{dE/dx}{1+k_B \cdot dE/dx}$.

• N_0 : light yield at low dE/dx.

Birks formula

Birk's formula for organic scintillators: light yield $N = N_0 \cdot \frac{dE/dx}{1+k_B \cdot dE/dx}$.

- N_0 : light yield at low dE/dx.
- $k_b \approx 0.01 \text{ g/(MeV cm^2)}.$

Birks formula

- Birk's formula for organic scintillators: light yield $N = N_0 \cdot \frac{dE/dx}{1+k_B \cdot dE/dx}$.
 - N_0 : light yield at low dE/dx.
 - $k_b \approx 0.01 \text{ g/(MeV cm^2)}.$

• low energy losses: $n = N_0 \cdot \frac{dE}{dx}$ (linear dependence).

Birks formula

- Birk's formula for organic scintillators: light yield $N = N_0 \cdot \frac{dE/dx}{1+k_B \cdot dE/dx}$.
 - N_0 : light yield at low dE/dx.
 - $> k_b \approx 0.01 \text{ g/(MeV cm^2)}.$
 - low energy losses: $n = N_0 \cdot \frac{dE}{dx}$ (linear dependence).
 - very high losses: $N = \frac{N_0}{k_B}$ (saturation).

Birks formula

- Birk's formula for organic scintillators: light yield $N = N_0 \cdot \frac{dE/dx}{1+k_B \cdot dE/dx}$.
 - N_0 : light yield at low dE/dx.
 - $k_b \approx 0.01 \text{ g/(MeV cm^2)}.$
 - low energy losses: $n = N_0 \cdot \frac{dE}{dx}$ (linear dependence).
 - very high losses: $N = \frac{N_0}{k_B}$ (saturation).
- Anti-correlation between ionisation and excitation (scintillation).

Adiabatic Light Guide

Cherenkov Radiation

Velocity of the particle: v. Velocity of light in a medium of refractive index n: c/n. threshold condition:

 $v_{\text{thresh}} \ge c/n \implies \beta_{\text{thresh}} = \frac{v_{\text{thresh}}}{c} \ge \frac{1}{n}.$

Cherenkov Radiation

Velocity of the particle: v. Velocity of light in a medium of refractive index n : c/n. threshold condition:

$$v_{\text{thresh}} \ge c/n \implies \beta_{\text{thresh}} = \frac{v_{\text{thresh}}}{c} \ge \frac{1}{n}.$$

$$\cos \Theta_C = \frac{1}{n\beta},$$

$$\beta = 1: \quad \Theta_C^{\max} = \arccos \frac{1}{n} = 42^\circ \text{ in water,}$$

$$E_{\text{thresh}} = \gamma_{\text{thresh}} \cdot m_0 c^2; \quad \gamma_{\text{thresh}} = \frac{1}{\sqrt{1 - \beta_{\text{thresh}}^2}} = \frac{n}{\sqrt{n^2 - 1}}.$$

• number of Cherenkov photons per unit path length:

$$\frac{\mathrm{d}N}{\mathrm{d}x} = 2\pi\alpha z^2 \cdot \int \left(1 - \frac{1}{n^2\beta^2}\right) \frac{\mathrm{d}\lambda}{\lambda^2} = 2\pi\alpha z^2 \frac{\lambda_1 - \lambda_2}{\lambda_1\lambda_2 02} \sin^2\Theta_C$$
$$= 490z^2 \sin^2\Theta_C \ [\mathrm{cm}^{-1}]$$
$$\approx 210 \ \mathrm{cm}^{-1} \text{ in water for } z = 1 \text{ and } \beta = \mathrm{hylics of Particle Detection - p.36/87}$$

Cherenkov Counters

• Threshold Cherenkov counter

Cherenkov Counters

- Threshold Cherenkov counter
- DIRC: Detection of Internally Reflected Cherenkov light

Cherenkov Counters

- Threshold Cherenkov counter
- DIRC: Detection of Internally Reflected Cherenkov light
- RICH Ring Imaging Cherenkov Counter

Threshold *Cherenkov* **counter**

Pulse height distribution for 3.5 GeV/c pions and protons in an aerogel Cherenkov counter.

BELLE Collaboration hep-ex/9903045 (1999)

 $\gamma_{\text{thresh}} = \frac{n}{\sqrt{n^2 - 1}} = 5.84 \text{ for aerogel of } n = 1.015$

$$p = 3.5 \text{ GeV}/c = \begin{cases} E_{\pi} = 3.50 \text{GeV}; & \gamma_{\pi} = 25.1 \\ E_{p} = 3.63 \text{ GeV}; & \gamma_{p} = 3.86 \end{cases}$$

 $\gamma_{\pi} > \gamma_{\text{thres}}; \ \gamma_p < \gamma_{\text{thres}}.$

DIRC

DIRC-counter 5.4 GeV/c I. Adam et al. 1997

RICH (1)

RICH Ar + C₄F₁₀ = 25/75100 channel PMT $10 \times 10 \text{ cm}^2$

R. Debbe et al. hep-ex/9503006

RICH (2)

RICH Ar + C₄F₁₀ = 25/75100 channel PMT 10 × 10 cm² 3 GeV/c

R. Debbe et al. hep-ex/9503006

 $r\sim\sin\Theta$

Super-Kamiokande

Filling the water Cherenkov counter.

Super-Kamiokande

Event with a stopping muon.

 $\mu + N \to \mu^- + X$ $\hookrightarrow e^- + \overline{\nu}_e + \nu_\mu$

 $E_{\nu_{\mu}} = 481 \text{ MeV}$ $E_{\mu} = 394 \text{ MeV}$ $E_e = 52 \text{ MeV}$

Superkamiokande Photo Gallery

SNO -Sudbury Neutrino Observatory (1)

Event with a stopping muon.

$$\mu + N \to \mu^- + X$$
$$\hookrightarrow e^- + \overline{\nu}_e + \nu_\mu$$

two frames taken at $\Delta t = 0.9 \ \mu s$ time difference

SNO Photo Gallery

SNO -Sudbury Neutrino Observatory (2)

Transition Radiation

Energy radiated from a single boundary: $S = \frac{1}{3}\alpha z^2 \hbar \omega_p \gamma \propto \gamma$ with $\hbar \omega_P$: plasma energy, $\hbar \omega_P \approx 20 \ eV$ for plastic radiators.

Typical emission angle: $\Theta = \frac{1}{\gamma}$, energy of radiated photons $\sim \gamma$, \sim number of radiated photons: αz^2 . Effective threshold: $\gamma \approx 1000$. Use stacked assemblies of low Z

material with many transitions.

Detector with high Z gas.

Li-foils as radiator

Fabjan et al. 1980

NOMAD TRD

test beam performance: e/μ -separation at 10 GeV

Physics of Particle Detection – p.48/87

Bremsstrahlung (2)

material	X_0 [g/cm ²]	$X_0[\mathrm{cm}]$	$E_c[\mathrm{MeV}]$
air	37	30000	84
iron	13.9	1.76	22
lead	6.4	0.56	7.3

Bremsstrahlung (2)

material	$X_0[\mathrm{g/cm}^2]$	$X_0[\mathrm{cm}]$	$E_c[{\rm MeV}]$
air	37	30000	84
iron	13.9	1.76	22
lead	6.4	0.56	7.3

Since $-\frac{dE}{dx} \propto r^2 \propto \frac{1}{m^2}$ electron *bremsstrahlung* dominates, but also other particles radiate, expecially at high energies: $E_c^{\mu} = E_c^e \cdot \left(\frac{m_{\mu}}{m_e}\right)^2 = 960 \text{ GeV}.$ $\sim \text{muon calorimetry at TeV energies}$

Bremsstrahlung (2)

material	$X_0[\mathrm{g/cm}^2]$	$X_0[\mathrm{cm}]$	$E_c[{\rm MeV}]$
air	37	30000	84
iron	13.9	1.76	22
lead	6.4	0.56	7.3

Since $-\frac{dE}{dx} \propto r^2 \propto \frac{1}{m^2}$ electron *bremsstrahlung* dominates, but also other particles radiate, expecially at high energies: $E_c^{\mu} = E_c^e \cdot \left(\frac{m_{\mu}}{m_e}\right)^2 = 960 \text{ GeV}.$ \rightsquigarrow muon calorimetry at TeV energies

Bremsstrahlung is important for electromagnetic cascades.

Bremsstrahlung (3)

C. Grupen ALEPH

Magnetic field perpendicular to the transparency.

In addition to ionisation and bremsstrahlung energetic particles undergo

• direct electron pair production ("tridents"),

In addition to ionisation and bremsstrahlung energetic particles undergo

- direct electron pair production ("tridents"),
- nuclear interactions.

In addition to ionisation and bremsstrahlung energetic particles undergo

- direct electron pair production ("tridents"),
- nuclear interactions.

$$\rightarrow -\frac{\mathrm{d}E}{\mathrm{d}x} = a(E) + b(E) \cdot E$$
 with

- a(E): ionisation energy loss,
- $b(E) = b_{\text{brems}}(E) + b_{\text{pair prod.}}(E) + b_{\text{nucl. int.}}(E).$

In addition to ionisation and bremsstrahlung energetic particles undergo

- direct electron pair production ("tridents"),
- nuclear interactions.

$$\rightarrow -\frac{\mathrm{d}E}{\mathrm{d}x} = a(E) + b(E) \cdot E$$
 with

- a(E): ionisation energy loss,
- $b(E) = b_{\text{brems}}(E) + b_{\text{pair prod.}}(E) + b_{\text{nucl. int.}}(E).$

Range of muons:

$$R = \int_{E}^{0} \frac{\mathrm{d}E}{-\mathrm{d}E/\mathrm{d}x} = \frac{1}{b} \ln\left(1 + \frac{b}{a}E\right) \begin{cases} 140 \text{ m} & \text{rock for } E = 100 \text{ GeV} \\ 800 \text{ m} & \text{rock for } E = 1 \text{ TeV} \\ 2300 \text{ m} & \text{rock for } E = 10 \text{ TeV} \end{cases}$$

• Interaction length: $\lambda_i = \frac{A}{N \cdot \rho \cdot \sigma_{\text{total}}}$ [cm], sometimes also called "collision length".

- Interaction length: $\lambda_i = \frac{A}{N \cdot \rho \cdot \sigma_{\text{total}}}$ [cm], sometimes also called "collision length".
- Absorption length: $\lambda_a = \frac{A}{N \cdot \rho \cdot \sigma_{\text{inel}}}$ [cm] with $\sigma_{\text{inel}} = \sigma_0 \cdot A^{\alpha}$, $\alpha \approx 0.71$ "shadowing" interaction probability: $\phi [(\text{g/cm}^2)^{-1}] = \sigma_N \cdot N$ $\sigma_N \approx 50 \text{ mb/nucleon typically.}$

- Interaction length: $\lambda_i = \frac{A}{N \cdot \rho \cdot \sigma_{\text{total}}}$ [cm], sometimes also called "collision length".
- Absorption length: $\lambda_a = \frac{A}{N \cdot \rho \cdot \sigma_{\text{inel}}}$ [cm] with $\sigma_{\text{inel}} = \sigma_0 \cdot A^{\alpha}$, $\alpha \approx 0.71$ "shadowing" interaction probability: $\phi [(\text{g/cm}^2)^{-1}] = \sigma_N \cdot N$ $\sigma_N \approx 50 \text{ mb/nucleon typically.}$

material	Al	Fe	Pb	air
$\lambda_i/{ m cm}$	26.2	10.6	10.4	48000
$\lambda_i/~({ m g/cm^2})$	70.6	82.8	116.2	62.0

for most materials λ_i , $\lambda_a > X_0$.

S=2m Elab

Particle Data Group, Eur. Phys. J. C 15 (2000) 1

Physics of Particle Detection – p.55/87

Interactions of Photons (1)

 $I = I_0 e^{-\mu x} \text{ with}$ $\mu = \frac{N}{A} \sum_{i=1}^{3} \sigma_i$ (mass attenuation coefficient).

 $\sigma_i = \begin{cases} i = 1 : & \text{photoelectric effect} \\ i = 2 : & \text{Compton scattering} \\ i = 3 : & \text{pair production} \end{cases}$

Interactions of Photons (1)

 $I = I_0 e^{-\mu x} \text{ with}$ $\mu = \frac{N}{A} \sum_{i=1}^{3} \sigma_i$ (mass attenuation coefficient).

 $\sigma_i = \begin{cases} i = 1 : & \text{photoelectric effect} \\ i = 2 : & \text{Compton scattering} \\ i = 3 : & \text{pair production} \end{cases}$

Photoelectric Effect:

 $\gamma + \text{atom} \rightarrow \text{atom}^+ + e^-$ predominantly in the K-shell. Complicated energy and Z-dependence.

Interactions of Photons (1)

 $I = I_0 e^{-\mu x} \text{ with}$ $\mu = \frac{N}{A} \sum_{i=1}^{3} \sigma_i$ (mass attenuation coefficient).

 $\sigma_i = \begin{cases} i = 1 : & \text{photoelectric effect} \\ i = 2 : & \text{Compton scattering} \\ i = 3 : & \text{pair production} \end{cases}$

Photoelectric Effect:

 $\gamma + \text{atom} \rightarrow \text{atom}^+ + e^-$ predominantly in the K-shell. Complicated energy and Z-dependence.

 $\sigma_{\text{Photo}}^{\text{K}} = \left(\frac{32}{\varepsilon^7}\right)^{1/2} \alpha^4 Z^5 \sigma_{\text{Thomson}} [\text{cm}^2/\text{atom}]; \quad \varepsilon = \frac{E_{\gamma}}{m_e c^2},$ $\sigma_{\text{Thomson}} = \frac{8}{3} \pi r_e^2 = 665 \text{ mb.}$ For high energies: $\sigma_{\text{Photo}}^{\text{K}} = 4\pi r_e^2 Z^5 \alpha^4 \cdot \frac{1}{\varepsilon}.$

Interactions of Photons (2)

Compton Scattering:

 $\sigma_{\rm C} \propto \frac{\ln \varepsilon}{\varepsilon} \cdot Z$ The photon counts the number of electrons in the atom:

 $\frac{E'_{\gamma}}{E_{\gamma}} = \frac{1}{1 + \varepsilon (1 - \cos \Theta_{\gamma})}.$

Maximum energy transfer for backscattering $(\Theta_{\gamma} = \pi)$:

$$E_{\max}^{\min} = \frac{2\varepsilon^2}{1+2\varepsilon} m_e c^2 \xrightarrow[\varepsilon >>1]{} E_{\gamma}$$

Interactions of Photons (2)

Compton Scattering:

 $\sigma_{\rm C} \propto \frac{\ln \varepsilon}{\varepsilon} \cdot Z$ The photon counts the number of electrons in the atom:

 $\frac{E'_{\gamma}}{E_{\gamma}} = \frac{1}{1 + \varepsilon (1 - \cos \Theta_{\gamma})}.$

Maximum energy transfer for backscattering $(\Theta_{\gamma} = \pi)$: $E_{\max}^{\min} = \frac{2\varepsilon^2}{1+2\varepsilon} m_e c^2 \xrightarrow[\varepsilon >>1]{} E_{\gamma}.$

In general the photon is not fully absorbed: \rightarrow energy scattering cross section: $\sigma_{CS} = \frac{E'_{\gamma}}{E_{\gamma}}\sigma_{C}$ and energy absorption cross section: $\sigma_{CA} = \sigma_{C} - \sigma_{CS} = \frac{E^{\text{kin}}}{E_{\gamma}} \cdot \sigma_{C}$.

Interactions of Photons (2)

Compton Scattering:

 $\sigma_{\rm C} \propto \frac{\ln \varepsilon}{\varepsilon} \cdot Z$ The photon counts the number of electrons in the atom:

 $\frac{E_{\gamma}'}{E_{\gamma}} = \frac{1}{1 + \varepsilon (1 - \cos \Theta_{\gamma})}.$

Maximum energy transfer for backscattering $(\Theta_{\gamma} = \pi)$: $E_{\max}^{\min} = \frac{2\varepsilon^2}{1+2\varepsilon} m_e c^2 \xrightarrow[\varepsilon >>1]{} E_{\gamma}.$ γ γ Θ_{γ} e^{-}

In general the photon is not fully absorbed: \rightarrow energy scattering cross section: $\sigma_{CS} = \frac{E'_{\gamma}}{E_{\gamma}}\sigma_{C}$ and energy absorption cross section: $\sigma_{CA} = \sigma_{C} - \sigma_{CS} = \frac{E^{\text{kin}}}{E_{\gamma}} \cdot \sigma_{C}$. \Rightarrow Distinction between mass attenuation coefficient (relates to σ_{CA}) and mass absorption coefficient (relates to σ_{CA})

Interactions of Photons (3)

Pair Production:

E

 γ + nucleus \rightarrow nucleus' + $e^+ + e^-$

Threshold energy:

$$\gamma = 2m_e c^2 + \frac{2m_e^2 c^2}{m_{\text{target}}}$$
$$= \begin{cases} \approx 2m_e c^2 & \text{on a nucleus} \\ 4m_e c^2 & \text{on an electron} \end{cases}$$

Coulomb field

γ

 e^+

e⁻

Interactions of Photons (3)

Pair Production:

 γ + nucleus \rightarrow nucleus' + $e^+ + e^-$

Threshold energy:

Coulomb field

e⁻

For $\varepsilon >> \frac{1}{\alpha Z^{1/3}}$ i.e. $E_{\gamma} >> 20 \text{ MeV}$ (complete screening): $\sigma_{\text{pair}} = 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{1/3}} - \frac{1}{54}\right) [\text{cm}^2/\text{atom}] \approx \frac{7}{9} \frac{A}{N} \cdot \frac{1}{X_0}.$

Interactions of Photons (3)

Pair Production:

 γ + nucleus \rightarrow nucleus' + $e^+ + e^-$

Threshold energy:

Coulomb field

e⁻

For $\varepsilon >> \frac{1}{\alpha Z^{1/3}}$ i.e. $E_{\gamma} >> 20$ MeV (complete screening): $\sigma_{\text{pair}} = 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{1/3}} - \frac{1}{54}\right) [\text{cm}^2/\text{atom}] \approx \frac{7}{9} \frac{A}{N} \cdot \frac{1}{X_0}.$ At high energies ($E_{\gamma} > 1$ GeV) asymmetric energy sharing between e^+ and e^- , important for electromagnetic cascades.

Interactions of Photons (4)

Harshaw 1969

Setup for γ Ray Spectroscopy

γ Spectrum of ¹³⁷Cs

γ Spectrum of ⁶⁰Co with NaI(Tl)

γ Spectrum of ⁶⁰Co with HPGe

Physics of Particle Detection – p.63/87

High resolution photon detector

CRESST - Cryogenic Rare Event Search with Superconducting Thermometers

NIM A 354 (1995) 408 avmp01.mppmu.mpg.de/cresst/

Superconducting phase transition thermometer Principle:

 $\frac{\Delta R}{\Delta T} \Rightarrow \frac{\mathrm{d}R}{\mathrm{d}t} \to U_{\mathrm{ind}} \Rightarrow \frac{\mathrm{d}H}{\mathrm{d}t}$

SQUID (Super Conducting Quantum Interference Device)

Physics of Particle Detection – p.64/87

Trident Production / Pair Production

Trident production: $\gamma + e^- \rightarrow e^- + e^+ + e^-$

Pair production: $\gamma + \text{nucleus} \rightarrow \text{nucleus}' + e^+ + e^-$

F. Close et al. 1987

ALEPH

Indirect detection technique: induce neutrons to interact and produce charged particles:

• $n + {}^{6}\text{Li} \to \alpha + {}^{3}\text{H} \Rightarrow \text{Li}(\text{Tl})$ scintillators

Indirect detection technique: induce neutrons to interact and produce charged particles:

• $n + 6 \operatorname{Li} \to \alpha + 3 \operatorname{H} \Rightarrow \operatorname{Li}(\operatorname{Tl})$ scintillators

• $n + {}^{10}\text{B} \to \alpha + {}^{7}\text{Li} \Rightarrow \text{BF}_3$ gas counters

Indirect detection technique: induce neutrons to interact and produce charged particles:

- $n + 6 \operatorname{Li} \to \alpha + 3 \operatorname{H} \Rightarrow \operatorname{Li}(\operatorname{Tl})$ scintillators
- $n + {}^{10}\text{B} \rightarrow \alpha + {}^{7}\text{Li} \Rightarrow \text{BF}_3$ gas counters
- $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H} \Rightarrow {}^{3}\text{He-filled proportional chambers}$

Indirect detection technique: induce neutrons to interact and produce charged particles:

- $n + 6 \operatorname{Li} \to \alpha + 3 \operatorname{H} \Rightarrow \operatorname{Li}(\operatorname{Tl})$ scintillators
- $n + {}^{10}\text{B} \to \alpha + {}^{7}\text{Li} \Rightarrow \text{BF}_3$ gas counters
- $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H} \Rightarrow {}^{3}\text{He-filled proportional chambers}$
- $n + p \rightarrow n + p \Rightarrow$ proportional chambers with e.g. CH₄

Indirect detection technique: induce neutrons to interact and produce charged particles:

- $n + 6 \operatorname{Li} \to \alpha + 3 \operatorname{H} \Rightarrow \operatorname{Li}(\operatorname{Tl})$ scintillators
- $n + {}^{10}\text{B} \to \alpha + {}^{7}\text{Li} \Rightarrow \text{BF}_3$ gas counters
- $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H} \Rightarrow {}^{3}\text{He-filled proportional chambers}$
- $n + p \rightarrow n + p \Rightarrow$ proportional chambers with e.g. CH_4
- $n + {}^{235}\mathrm{U} \rightarrow \mathrm{fission\ products} \Rightarrow \mathrm{coated\ proportional\ counters}$

Indirect detection technique: induce neutrons to interact and produce charged particles:

• $n + 6 \operatorname{Li} \to \alpha + 3 \operatorname{H} \Rightarrow \operatorname{Li}(\operatorname{Tl})$ scintillators

• $n + {}^{10}\text{B} \to \alpha + {}^{7}\text{Li} \Rightarrow \text{BF}_3$ gas counters

• $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H} \Rightarrow {}^{3}\text{He-filled proportional chambers}$

• $n + p \rightarrow n + p \Rightarrow$ proportional chambers with e.g. CH₄

• $n + 2^{\overline{35}} U \rightarrow \text{fission products} \Rightarrow \text{coated proportional counters}$

• $n + \text{nucleus} \rightarrow \text{hadron cascade} \Rightarrow \text{calorimeters}$
Indirect detection technique: induce neutrons to interact and produce charged particles:

• $n + {}^{6}\operatorname{Li} \to \alpha + {}^{3}\operatorname{H} \Rightarrow \operatorname{Li}(\operatorname{Tl})$ scintillators

• $n + {}^{10}\text{B} \to \alpha + {}^{7}\text{Li} \Rightarrow \text{BF}_3$ gas counters

• $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H} \Rightarrow {}^{3}\text{He-filled proportional chambers}$

• $n + p \rightarrow n + p \Rightarrow$ proportional chambers with e.g. CH₄

• n + 235 U \rightarrow fission products \Rightarrow coated proportional counters

• $n + \text{nucleus} \rightarrow \text{hadron cascade} \Rightarrow \text{calorimeters}$

Neutron detection and identification is important in the field of radiation protection because the relative biological effectiveness (quality factor) is high and depends on the neutron energy.

H [Sievert] = $q \cdot D$ [Gray]

 $\nu_{e} + n \rightarrow p + e^{-}$ $\overline{\nu}_{e} + p \rightarrow n + e^{+} \text{ (discovery of the neutrino)}$ $\nu_{\mu} + n \rightarrow p + \mu^{-}; \quad \nu_{\tau} + n \rightarrow p + \tau^{-}$ $\overline{\nu}_{\mu} + p \rightarrow n + \mu^{+}; \quad \overline{\nu}_{\tau} + p \rightarrow n + \tau^{+}$

 $\nu_{e} + n \rightarrow p + e^{-}$ $\overline{\nu}_{e} + p \rightarrow n + e^{+} \text{ (discovery of the neutrino)}$ $\nu_{\mu} + n \rightarrow p + \mu^{-}; \quad \nu_{\tau} + n \rightarrow p + \tau^{-}$ $\overline{\nu}_{\mu} + p \rightarrow n + \mu^{+}; \quad \overline{\nu}_{\tau} + p \rightarrow n + \tau^{+}$

Small cross section: for MeV neutrinos:

$$\sigma(\nu_e N) = \frac{4}{\pi} \cdot 10^{-10} \left\{ \frac{\hbar p}{(m_p c)^2} \right\}^2 = 1.6 \cdot 10^{-44} \text{ cm}^2 \text{ for } 0.5 \text{ MeV}.$$

 $\nu_{e} + n \rightarrow p + e^{-}$ $\overline{\nu}_{e} + p \rightarrow n + e^{+} \text{ (discovery of the neutrino)}$ $\nu_{\mu} + n \rightarrow p + \mu^{-}; \quad \nu_{\tau} + n \rightarrow p + \tau^{-}$ $\overline{\nu}_{\mu} + p \rightarrow n + \mu^{+}; \quad \overline{\nu}_{\tau} + p \rightarrow n + \tau^{+}$

Small cross section: for MeV neutrinos:

$$\sigma(\nu_e N) = \frac{4}{\pi} \cdot 10^{-10} \left\{ \frac{\hbar p}{(m_p c)^2} \right\}^2 = 1.6 \cdot 10^{-44} \text{ cm}^2 \text{ for } 0.5 \text{ MeV.}$$

Rate of solar neutrinos interacting in the earth:

$$N\sigma d \cdot \rho \cdot \text{flux} = \underbrace{6.022 \cdot 10^{23}}_{N} \cdot \underbrace{1.6 \cdot 10^{-44} \text{ cm}^2}_{\sigma} \cdot \underbrace{1.2 \cdot 10^9 \text{ cm}}_{d} \cdot \underbrace{5.5 \text{ g/cm}^3}_{\rho} \cdot \underbrace{6.7 \cdot 10^{10} \text{ cm}^{-2} \text{s}^{-1}}_{\text{flux}} = 4\frac{1}{\text{s}}$$

 $\nu_{e} + n \rightarrow p + e^{-}$ $\overline{\nu}_{e} + p \rightarrow n + e^{+} \text{ (discovery of the neutrino)}$ $\nu_{\mu} + n \rightarrow p + \mu^{-}; \quad \nu_{\tau} + n \rightarrow p + \tau^{-}$ $\overline{\nu}_{\mu} + p \rightarrow n + \mu^{+}; \quad \overline{\nu}_{\tau} + p \rightarrow n + \tau^{+}$

Small cross section: for MeV neutrinos:

$$\sigma(\nu_e N) = \frac{4}{\pi} \cdot 10^{-10} \left\{ \frac{\hbar p}{(m_p c)^2} \right\}^2 = 1.6 \cdot 10^{-44} \text{ cm}^2 \text{ for } 0.5 \text{ MeV}.$$

Rate of solar neutrinos interacting in the earth: $N\sigma d \cdot \rho \cdot \text{flux} = \underbrace{6.022 \cdot 10^{23}}_{N} \cdot \underbrace{1.6 \cdot 10^{-44} \text{ cm}^2}_{\sigma} \cdot \underbrace{1.2 \cdot 10^9 \text{ cm}}_{d} \cdot \underbrace{5.5 \text{ g/cm}^3}_{\rho} \cdot \underbrace{6.7 \cdot 10^{10} \text{ cm}^{-2} \text{s}^{-1}}_{\text{flux}} = 4\frac{1}{\text{s}}$ For high energies (GeV-range):

 $\sigma(\nu_{\mu}N) = 0.67 \cdot 10^{-38} E_{\nu} \text{ [GeV] cm}^2/\text{nucleon}$ $\sigma(\overline{\nu}_{\mu}N) = 0.34 \cdot 10^{-38} E_{\nu} \text{ [GeV] cm}^2/\text{nucleon}$

 $\nu_{e} + n \rightarrow p + e^{-}$ $\overline{\nu}_{e} + p \rightarrow n + e^{+} \text{ (discovery of the neutrino)}$ $\nu_{\mu} + n \rightarrow p + \mu^{-}; \quad \nu_{\tau} + n \rightarrow p + \tau^{-}$ $\overline{\nu}_{\mu} + p \rightarrow n + \mu^{+}; \quad \overline{\nu}_{\tau} + p \rightarrow n + \tau^{+}$

Small cross section: for MeV neutrinos:

$$\sigma(\nu_e N) = \frac{4}{\pi} \cdot 10^{-10} \left\{ \frac{\hbar p}{(m_p c)^2} \right\}^2 = 1.6 \cdot 10^{-44} \text{ cm}^2 \text{ for } 0.5 \text{ MeV.}$$

Rate of solar neutrinos interacting in the earth: $N\sigma d \cdot \rho \cdot \text{flux} = \underbrace{6.022 \cdot 10^{23}}_{N} \cdot \underbrace{1.6 \cdot 10^{-44} \text{ cm}^2}_{\sigma} \cdot \underbrace{1.2 \cdot 10^9 \text{ cm}}_{d} \cdot \underbrace{5.5 \text{ g/cm}^3}_{\rho} \cdot \underbrace{6.7 \cdot 10^{10} \text{ cm}^{-2} \text{s}^{-1}}_{\text{flux}} = 4\frac{1}{\text{s}}$

For high energies (GeV-range): $\sigma(\nu_{\mu}N) = 0.67 \cdot 10^{-38} E_{\nu} \text{ [GeV] cm}^2/\text{nucleon}$ $\sigma(\overline{\nu}_{\mu}N) = 0.34 \cdot 10^{-38} E_{\nu} \text{ [GeV] cm}^2/\text{nucleon}$

Measurement by missing momentum and missing energy technique.

Electromagnetic Cascade (1)

 ν_e + nucleon $\rightarrow e^-$ + hadrons electromagnetic cascade

H. Wachsmuth, CERN 1998

The basic features can already be learned from a very simple model:

The basic features can already be learned from a very simple model:

The basic features can already be learned from a very simple model:

Energy of particles (e^{-}, e^{-}, γ) . N(t) = 2. Energy of particles: $E(t) = E_0 \cdot 2^{-t}$. Particle multiplication stops if: $E(t) < E_c$: $E_c = E_0 \cdot 2^{-t_{\max}}$. $t_{\max} = \frac{\ln E_0/E_c}{\ln 2} \propto \ln E_0$

Total number of shower particles:

 $S = \sum N(t) = \sum 2^{t} = 2^{t_{\max}+1} - 1 \approx 2 \cdot 2^{t_{\max}} = 2 \cdot \frac{E_0}{E_c} \propto E_0.$

Total track length (sampling step *t*):

 $\overline{S^*} = \frac{S}{t} = 2 \cdot \frac{E_0}{E_c} \cdot \frac{1}{t},$ $\frac{\sigma(E_0)}{E_0} = \frac{\sqrt{S^*}}{S^*} = \frac{\sqrt{t}}{\sqrt{2E_0/E_c}} \propto \frac{\sqrt{t}}{\sqrt{E_0}}.$

Total track length (sampling step *t*):

 $S^* = \frac{S}{t} = 2 \cdot \frac{E_0}{E_c} \cdot \frac{1}{t},$ $\frac{\sigma(E_0)}{E_0} = \frac{\sqrt{S^*}}{S^*} = \frac{\sqrt{t}}{\sqrt{2E_0/E_c}} \propto \frac{\sqrt{t}}{\sqrt{E_0}}.$

Realistic description of the longitudinal shower development: $\frac{dE}{dt} = \text{const.} \cdot t^{\alpha} e^{-bt} \quad (a, b: \text{ fit parameters}).$

Total track length (sampling step *t*):

$$S^* = \frac{S}{t} = 2 \cdot \frac{E_0}{E_c} \cdot \frac{1}{t},$$
$$\frac{\sigma(E_0)}{E_0} = \frac{\sqrt{S^*}}{S^*} = \frac{\sqrt{t}}{\sqrt{2E_0/E_c}} \propto \frac{\sqrt{t}}{\sqrt{E_0}}.$$

Realistic description of the longitudinal shower development: $\frac{dE}{dt} = \text{const.} \cdot t^{\alpha} e^{-bt} \quad (a, b: \text{ fit parameters}).$

The lateral spread (caused by multiple scattering) is governed by the Molière radius:

 $R_m = \frac{21 \text{ MeV}}{E_c} \cdot X_0 \text{ [g/cm^2]}.$

Total track length (sampling step *t*):

$$S^* = \frac{S}{t} = 2 \cdot \frac{E_0}{E_c} \cdot \frac{1}{t},$$
$$\frac{\sigma(E_0)}{E_0} = \frac{\sqrt{S^*}}{S^*} = \frac{\sqrt{t}}{\sqrt{2E_0/E_c}} \propto \frac{\sqrt{t}}{\sqrt{E_0}}.$$

Realistic description of the longitudinal shower development: $\frac{dE}{dt} = \text{const.} \cdot t^{\alpha} e^{-bt} \quad (a, b: \text{ fit parameters}).$

The lateral spread (caused by multiple scattering) is governed by the Molière radius:

 $R_m = \frac{21 \text{ MeV}}{E_c} \cdot X_0 \text{ [g/cm^2]}.$

95% of the shower energy is contained in a cylinder of radius $2R_m$. For homogenous calorimeters: $R_m = \begin{cases} 14 \text{ g/cm}^2 = 1.8 \text{ cm} & \text{Fe} \\ 18 \text{ g/cm}^2 = 1.6 \text{ cm} & \text{Pb} \end{cases}$

Total track length (sampling step *t*):

$$S^* = \frac{S}{t} = 2 \cdot \frac{E_0}{E_c} \cdot \frac{1}{t},$$
$$\frac{\sigma(E_0)}{E_0} = \frac{\sqrt{S^*}}{S^*} = \frac{\sqrt{t}}{\sqrt{2E_0/E_c}} \propto \frac{\sqrt{t}}{\sqrt{E_0}}.$$

Realistic description of the longitudinal shower development: $\frac{dE}{dt} = \text{const.} \cdot t^{\alpha} e^{-bt} \quad (a, b: \text{ fit parameters}).$

The lateral spread (caused by multiple scattering) is governed by the Molière radius:

 $R_m = \frac{21 \text{ MeV}}{E_c} \cdot X_0 \text{ [g/cm^2]}.$

95% of the shower energy is contained in a cylinder of radius $2R_m$. For homogenous calorimeters: $R_m = \begin{cases} 14 \text{ g/cm}^2 = 1.8 \text{ cm} & \text{Fe} \\ 18 \text{ g/cm}^2 = 1.6 \text{ cm} & \text{Pb} \end{cases}$

Attractive alternative: sampling calorimeters.

Logitudinal and Lateral Profile of an Electron Shower

6 GeV electrons, Grupen 1996

Multi-Plate Cloud Chamber (1)

 $\mu^- + \text{nucleus} \rightarrow \mu^- + \text{nucleus}' + \gamma$ $\gamma \rightarrow \text{electromagnetic cascade}$

Rochester 1981

	and a second	
Malanathe		
		18. M 19.
ALC: ALC		
March 1	······································	
		· · · · · · · · · · · · · · · · · · ·

Multi-Plate Cloud Chamber (2)

Multi-plate cloud chamber in an air shower experiment below 3 m of concrete

electromagnetic showers initiated by muon *brems*-

Wolter 1970

Longitudinal development: interaction length. Lateral spread: transverse momentum p_t since $\lambda > X_0$ and $\langle p_t \rangle >> \langle p_t \rangle_{\text{multiple scattering}}$

• Hadron cascades are wider and longer.

Longitudinal development: interaction length. Lateral spread: transverse momentum p_t since $\lambda > X_0$ and $\langle p_t \rangle >> \langle p_t \rangle_{\text{multiple scattering}}$

• Hadron cascades are wider and longer.

• Hadron energy

- charged particles (μ 's are lost)
- ectromagnetic shower (e, γ contained)
- nuclear binding energy (can be partially recovered)
- nuclear fragments (partially lost)

Longitudinal development: interaction length. Lateral spread: transverse momentum p_t since $\lambda > X_0$ and $\langle p_t \rangle >> \langle p_t \rangle_{\text{multiple scattering}}$

• Hadron cascades are wider and longer.

- Hadron energy
- charged particles (μ 's are lost)
- ectromagnetic shower (e, γ contained)
- nuclear binding energy (can be partially recovered)
- nuclear fragments (partially lost)
- The visible energy is systematically lower than the energy of the incident hadron.

Longitudinal development: interaction length. Lateral spread: transverse momentum p_t since $\lambda > X_0$ and $\langle p_t \rangle >> \langle p_t \rangle_{\text{multiple scattering}}$

• Hadron cascades are wider and longer.

- Hadron energy
- charged particles (μ 's are lost)
- ectromagnetic shower (e, γ contained)
- nuclear binding energy (can be partially recovered)
- nuclear fragments (partially lost)
- The visible energy is systematically lower than the energy of the incident hadron.

Problem of compensation: different response to electrons and hadrons, aim at balanced response $e/\pi = 1$.

Energy Sharing in a Hadron Cascade

Longidudinal Development of a Hadron Cascade

Holder 1978 NIM 151 (1978) 69

Extensive Air Showers of 10^{14} eV

J. Knapp, D. Heck, Karlsruhe 1998

Methods of Particle Identification

Particle Identification with Time of Flight (TOF)

$$\Delta t = L\left(\frac{1}{v_1} - \frac{1}{v_2}\right) = \frac{L}{c}\left(\frac{1}{\beta_1} - \frac{1}{\beta_2}\right)$$

using $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ this gives:

$$\Delta t = \frac{L}{c} \left\{ \sqrt{\frac{\gamma_1^2}{\gamma_1^2 - 1}} - \sqrt{\frac{\gamma_2^2}{\gamma_2^2 - 1}} \right\}.$$

Particle Identification with Time of Flight (TOF)

$$\Delta t = L\left(\frac{1}{v_1} - \frac{1}{v_2}\right) = \frac{L}{c}\left(\frac{1}{\beta_1} - \frac{1}{\beta_2}\right)$$

using $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ this gives:

$$\Delta t = \frac{L}{c} \left\{ \sqrt{\frac{\gamma_1^2}{\gamma_1^2 - 1}} - \sqrt{\frac{\gamma_2^2}{\gamma_2^2 - 1}} \right\}.$$

For relativistic particles $(E >> m_0 c^2)$: $\Delta t = \frac{L}{c} \left\{ \sqrt{1 + \frac{(m_1 c^2)^2}{E_1^2}} - \sqrt{1 + \frac{(m_2 c^2)^2}{E_2^2}} \right\}.$

Physics of Particle Detection – p.80/87

Particle Identification with Time of Flight (TOF)

$$\Delta t = L\left(\frac{1}{v_1} - \frac{1}{v_2}\right) = \frac{L}{c}\left(\frac{1}{\beta_1} - \frac{1}{\beta_2}\right)$$

using $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ this gives:

$$\Delta t = \frac{L}{c} \left\{ \sqrt{\frac{\gamma_1^2}{\gamma_1^2 - 1}} - \sqrt{\frac{\gamma_2^2}{\gamma_2^2 - 1}} \right\}.$$

For relativistic particles
$$(E >> m_0 c^2)$$
:

$$\Delta t = \frac{L}{c} \left\{ \sqrt{1 + \frac{(m_1 c^2)^2}{E_1^2}} - \sqrt{1 + \frac{(m_2 c^2)^2}{E_2^2}} \right\}.$$

Since in this case $\approx pc$ one gets for a momentum defined beam:

$$\Delta t = \frac{Lc}{2p^2} (m_1^2 - m_2^2).$$

Example: $e/\mu/\pi$ -separation

Example 1:

 $e/\mu/\pi$ -separation for L = 149.5 cm and p = 107.5 MeV/c using TOF compared to dE/dx.

Example: $e/\mu/\pi$ -separation

Example 1:

 $e/\mu/\pi$ -separation for L = 149.5 cm and p = 107.5 MeV/c using TOF compared to dE/dx.

E. Fragiacomo et al. NIM A 439 (2000) 45

Examples: TOF-resolution π/p -separation

Example 1: TOF-resolution with a multi-gapresistive plate chamber (RPC).

F. Sauli CERN-EP 2000/080

Examples: TOF-resolution π/p -separation

Example 1: TOF-resolution with a multi-gapresistive plate chamber (RPC).

F. Sauli CERN-EP 2000/080

 π/p -separation in a p = 2 GeV/c scintillator system.

A. Sapathy et al., BELLE 1999

Balloon Experiment; dE/dx; Cherenkov; momentum

ALICE

Balloon Experiment $\sim 40 \text{ km}$

Reimer 1995 Ph. D. Thesis Siegen Hesse 1991 Proc. ICRC Dublin, Vol. 1, p. 596
Balloon Experiment

Balloon flight 40 km, TOF, dE/dx, momentum, Cherenkov.

Reimer 1995 Ph. D. Thesis Siegen

• Interaction characteristic ~> particle detector.

- Interaction characteristic ~> particle detector.
- Particle identification:

- Interaction characteristic ~> particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,

- Interaction characteristic ~> particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,
 - indirect identification using invariant mass technique $(K_{\rm s}^0 \to \pi^+ + \pi^-, \Lambda \to p + \pi^-),$

- Interaction characteristic \rightsquigarrow particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,
 - indirect identification using invariant mass technique $(K_{\rm s}^0 \to \pi^+ + \pi^-, \Lambda \to p + \pi^-),$
 - very indirect identification using missing energy and momentum (neutrinos and other "invisible" particles (γ, LSP)).

- Interaction characteristic \rightsquigarrow particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,
 - indirect identification using invariant mass technique $(K_{\rm s}^0 \to \pi^+ + \pi^-, \Lambda \to p + \pi^-),$
 - very indirect identification using missing energy and momentum (neutrinos and other "invisible" particles (γ, LSP)).
- Essential for:

- Interaction characteristic ~> particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,
 - indirect identification using invariant mass technique $(K_{\rm s}^0 \to \pi^+ + \pi^-, \Lambda \to p + \pi^-),$
 - very indirect identification using missing energy and momentum (neutrinos and other "invisible" particles (γ, LSP)).
- Essential for:
 - elementary particles,

- Interaction characteristic \rightsquigarrow particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,
 - indirect identification using invariant mass technique $(K_{\rm s}^0 \to \pi^+ + \pi^-, \Lambda \to p + \pi^-),$
 - very indirect identification using missing energy and momentum (neutrinos and other "invisible" particles (γ, LSP)).
- Essential for:
 - elementary particles,
 - astroparticle physics,

- Interaction characteristic ~> particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,
 - indirect identification using invariant mass technique $(K_{\rm s}^0 \to \pi^+ + \pi^-, \Lambda \to p + \pi^-),$
 - very indirect identification using missing energy and momentum (neutrinos and other "invisible" particles (γ, LSP)).
- Essential for:
 - elementary particles,
 - astroparticle physics,
 - cosmic rays,

- Interaction characteristic \rightsquigarrow particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,
 - indirect identification using invariant mass technique $(K_{\rm s}^0 \to \pi^+ + \pi^-, \Lambda \to p + \pi^-),$
 - very indirect identification using missing energy and momentum (neutrinos and other "invisible" particles (γ, LSP)).
- Essential for:
 - elementary particles,
 - astroparticle physics,
 - cosmic rays,
 - medicine,

- Interaction characteristic ~> particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,
 - indirect identification using invariant mass technique $(K_{\rm s}^0 \to \pi^+ + \pi^-, \Lambda \to p + \pi^-),$
 - very indirect identification using missing energy and momentum (neutrinos and other "invisible" particles (γ, LSP)).
- Essential for:
 - elementary particles,
 - astroparticle physics,
 - cosmic rays,
 - medicine,
 - radiation protection,

- Interaction characteristic \rightsquigarrow particle detector.
- Particle identification:
 - direct identification: $(\pi, K, p, \mu, e, \gamma, ...)$,
 - indirect identification using invariant mass technique $(K_{\rm s}^0 \to \pi^+ + \pi^-, \Lambda \to p + \pi^-),$
 - very indirect identification using missing energy and momentum (neutrinos and other "invisible" particles (γ, LSP)).
- Essential for:
 - elementary particles,
 - astroparticle physics,
 - cosmic rays,
 - medicine,
 - radiation protection,