Semiconductor Detectors basic structures

OUTLINE Part I:

- 1. Semiconductors
- 2. Basic semiconductor structures
- (a) the pn diode
- (b) the MOS structure
- 3. Semiconductor fabrication: detectors and electronis
- 4. Simple pn-diode type detectors
- 5. Applications in high energy physics

Semiconductors as detector and electronics material

- 1. Semiconductors: $E_{Gap} \approx 1 3 \text{ eV}$
 - \rightarrow small leakage currents
 - \rightarrow low noise, operation @ r.t.
- 2. Pair creation energy: w = 2 5 eV
- 3. Density: $\rho = 2 10 \text{ g cm}^{-3}$

This leads to:

good energy resolution high spatial resolution high quantum and detection efficieny good mechanical regidity and thermal conductivity

Semiconductors equally offer:

fixed space charges high mobility of charge carriers

Istanbul, September - 8, 2005

- → large number of signal charges per energy deposit in detector
- \rightarrow high energy loss per unit length
- \rightarrow low range of δ electrons

Lothar Strüder MPI Halbleiterlabor, University of Siegen

Crystal structure of most commonly used semiconductors:

Si;Ge

GaAs

Diamond lattice

Zinc blende lattice

Can be considered as two interpenetrating face centered cubic sublattices displaced by one quarter of the diagonal of the cube

Lattice structure

Tetahedron bond to closest neighbors

(a) (b) Three dimensional arrangement and symbolic two dimensional representation

The silicon lattice

Reduce lattice spacing from infinity to lowest potential energy value

Bond representation

Band representation

5

completely empty

CONDUCTION BAND

Istanbul, September - 8, 2005

7

Carrier transport

Drift (acceleration between random collisions)

$$egin{aligned} ec{
u}_n &= -rac{q\cdot au_{ ext{c}}}{m_n}\,\mathcal{E} = -\mu_n\mathcal{E} \ ec{
u}_p &= rac{q\cdot au_{ ext{c}}}{m_p}\,\mathcal{E} = \mu_p\mathcal{E} \end{aligned}$$

Current density (drift and diffusion)

$$egin{aligned} ec{J_n} &= q \mu_n n \mathcal{E} + q D_n
abla n \ ec{J_p} &= q \mu_p p \mathcal{E} - q D_p
abla p \end{aligned}$$

Diffusion

 $ec{F}_n = -D_n
abla n$ $ec{F}_p = -D_p
abla p$

Einstein equation

$$D_n = rac{kT}{q} \mu_n$$
 $D_p = rac{kT}{q} \mu_p$

Inside magnetic field

 $an heta_p = \mu_p^{\mathrm{H}} \mathcal{B}$ $an heta_n = \mu_n^{\mathrm{H}} \mathcal{B}$

Continuity equations

Simultaneous consideration of

 $\begin{array}{ll} \mbox{Generation} & & \displaystyle \frac{\partial n}{\partial t} = \mu_n n \nabla \mathcal{E} + D_n \nabla^2 n + G_n - R_n \\ \mbox{Drift} & & \displaystyle \frac{\partial p}{\partial t} = -\mu_p p \nabla \mathcal{E} + D_p \nabla^2 p + G_p - R_p \end{array}$

Drift due to electric field derived from Poisson Equation

$$abla \mathcal{E} = rac{
ho}{\epsilon \epsilon_0} \;\;,\;\; ext{with}\;
ho = q(p-n+N_{ ext{D}}-N_{ ext{A}})$$

Numerical simulation: simultaneous solution of diffusion and Poisson equation with boundary conditions

VALENCE BAND

Charge multiplication

VÁLENCÉ BÁND

Recombination

Direct and indirect semiconductors

Generation and recombination through two step processes

Characterized by lifetimes

- Generation and recombination lifetimes are differently defined:
- Recombination: return to equilibrium in neutral semiconductor (emission and capture processes)
 - Generation: approach to intrinsic carrier density in fully depleted semiconductor (emission processes only)

PNSenser

BASIC STRUCTURES p-n junction

Connection between n-type and p-type semiconductor:

Approximation: abrupt change from neutral semiconductor to space charge region

Ec

E.

- Thermal equilibrium
- Constant Fermi level
- Drift current equal diffusion current
- Built in voltage

Shallow dopands majority carriers

$$n_n = N_{\mathrm{D}} = n_{\mathrm{i}} \mathrm{e}^{\frac{E_{\mathrm{F}} - E_{\mathrm{i}}^n}{kT}}$$

$$p_p = N_{\rm A} = n_{\rm i} \, \mathrm{e}^{\frac{E_{\rm i}^p - E_{\rm F}}{kT}}$$

$$N_{\mathrm{A}} \cdot N_{\mathrm{D}} = n_{\mathrm{i}}^2 \mathrm{e}^{rac{E_{\mathrm{i}}^p - E_{\mathrm{i}}^n}{kT}}$$

Built in voltage

$$V_{\rm bi} = \frac{1}{q} (E_{\rm i}^p - E_{\rm i}^n) = \frac{kT}{q} \ln \frac{N_{\rm A} N_{\rm D}}{n_{\rm i}^2}$$
$$= 0.0259 \ \ln \frac{10^{16} \cdot 10^{12}}{(1.45 \times 10^{10})^2} = 0.458 \,\rm V$$

Example: high doped n (1e16) on low doped p(1e12)

p-n junction

Application of an exteral voltage

Change extent of space charge region

(

$$l = \sqrt{\frac{2\epsilon\epsilon_0(N_{\rm A}+N_{\rm D})}{qN_{\rm A}N_{\rm D}}}(V_{\rm bi}-V)$$

- Non-equilibrium: Fermi level not defined
- Drift current not equal diffusion current
- Diffusion of minority carriers into (out of) space charge region

$$\begin{split} J &= (J_{\mathbf{s}_n} + J_{\mathbf{s}_p}) \left(\mathbf{e}^{\frac{qV}{kT}} - 1 \right) = J_{\mathbf{s}} \left(\mathbf{e}^{\frac{qV}{kT}} - 1 \right) \\ J_{\mathbf{s}} &= q \left(\frac{n_{p_0} D_n}{\sqrt{D_n \tau_{\mathbf{r}_n}}} + \frac{p_{n_0} D_p}{\sqrt{D_p \tau_{\mathbf{r}_p}}} \right) \end{split}$$

PNSenser

MOS (Metal-Insulator-Semiconductor) Structure

Basic structure in MOS transistor and in MOS CCDs

PNSenser

Semiconductors as Nuclear Radiation Detectors

Outstanding Material Properties

- small band gap (Si 1.12eV) \Rightarrow low e-h pair generation energy (Si 3.6 eV) (ionisation energy for gases \approx 30 eV)
- High density (Si 2.33 g/cm²) \Rightarrow large energy loss/length for ionising particles \Rightarrow thin detectors; small range δ electrons; precise position measurement
- Almost free movement of electrons and holes
- Mechanical rigidity; self supporting structure
- Doping creates fixed space charges; building of sophisticated field structures
- integration of detector and electronics in single device

Detector and electronics simulation and layout

1. The detector idea: simulation of electrical properties

3. Design and layout of the entire detetor system, including signal processing and DAQ

2. Simulation of the production process

Detector and electronics fabrication

4. Fabrication facility at the MPI - HLL

from outside

and from inside

5. Quality assurance and control

Istanbul, September - 8, 2005

6. Separation, mounting, bonding

7. System test, field test, data analysis and modelling

Lothar Strüder MPI Halbleiterlabor, University of Siegen

Diode type detectors

PNSenser

particle tracking = detection of individual charged particles 1D resolution

Strip Detector example

ATLAS Silicon Tracker @ CERN LHC

application

particle tracking

PNSenser

strip detector

format

strips strip pitch strip width resolution readout strip capacitance 6 x 6 cm² x 280 μm
single-sided
p-strips on n-substrate
768
80 μm
20 μm
23 μm rms
ac-coupled, binary
20 pF/cm coupling
1 pF/cm interstrip

ATLAS silicon tracker 55 m² of silicon strip and pixel detectors! Istanbul, September - 8, 2005

Silicon strip detectors for position **PN**Sensor **PN**Sensor

First strip detector: NA11 experiment at CERN (1980):

Hadronic charm production

Detector detail for the ATLAS SSD (2004)

2D resolution

- particle tracking = detection of individual charged particles
- imaging = count / integrate particles or photons

2D resolution

- particle tracking = detection of individual charged particles
- imaging = count / integrate particles or photons

1 preamp per pixel!

 front-to-front mounting of detector and readout chip ("bump bonding")

electroplating / reflow solder (PbSn) bumps

Sputter Etching and Sputtering of the Plating Base / UBM

Spin Coating and Printing of Photoresist

Electroplating of Cu and PbSn

"lift-off" Indium bumps

PILATUS

(independent of sensitive area)

- fully depleted volume
- minimum capacitance of bulk contact (independent of sensitive area)

- ?? signal extraction ??
- » advanced detector concepts

Istanbul, September - 8, 2005

Lothar Strüder MPI Halbleiterlabor, University of Siegen

start trigger!!

Signal for varying distance

d=.25 mm

d = 1.00 mm

d=2.50 mm

d = 3.25 mm

d=3.85 mm

200 ns/div

for varying drift field

Istanbul, September - 8, 2005

Light pulser 22000e

d = 1.75 mm

Lothar Strüder MPI Halbleiterlabor, University of Siegen

Silicon Drift Detector (SDD)

2D position resolution by

- drift time measurement
- segmentation of the anode

PNSenser

O, 0 500

400

300

width [um]

200

100

SDD example 1

STAR ¹⁾ experiment @ RHIC ²⁾ / BNL ³⁾

application

• particle tracking

SDD parameters

	format	6 x 6 cm² x 280 μm
		bidirectional drift
	anodes	2 x 240
	anode pitch	250 <i>µ</i> m
	drift voltage	1.500 V
	drift time	max. 5 <i>µ</i> sec
	resolution	17 µm rms drift
		8 µm rms anode
STAR detector		
	3 barrels	r = 5, 10, 15 cm
	SDDs	216

- readout channels 103.680
- pixels 13.271.040

Area of Detail Test Resistors Guard Area Direction of Drift Cyclindcical Direction **Drift Detectors** of Drift Test Diodes

- ¹⁾ Solenoidal Tracker At RHIC
- ²⁾ Relativistic Heavy Ion Collider
- ³⁾ Brookhaven National Laboratory

Istanbul, September - 8, 2005

Istanbul, September - 8, 2005

Semiconductor Detectors applications in basic science and industry <u>OUTLINE Part II</u>

- Semiconductors based on sideward depletion
 (a) the SDD with integrated FET
 (b) the pnCCD
 - (c) the CDD
 - (d) the DEPFET (active pixel sensor)
- 2. Avalanche amplifiers
- 3. Summary and Conclusion