

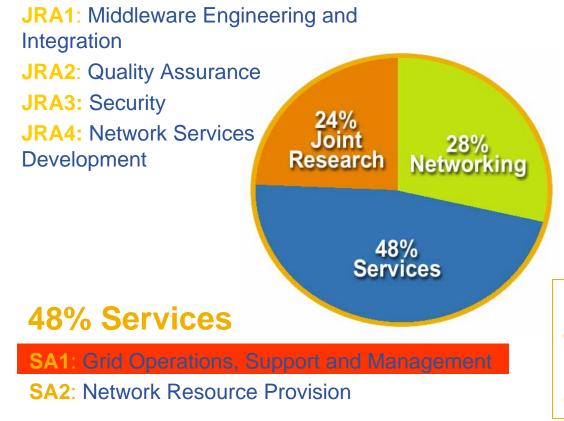
Operating the World's largest grid infrastructure

Roberto Barbera University of Catania and INFN Grids@work Sophia Antipolis, 10.10.2005

www.eu-egee.org

INFSO-RI-508833

Contents


- Scope an purpose of the activity
- Organisation
- Major tasks
- Interaction points

The EGEE Activities

Enabling Grids for E-sciencE

24% Joint Research

28% Networking

NA1: Management NA2: Dissemination and Outreach NA3: User Training and Education NA4: Application Identification and Support **NA5:** Policy and International Cooperation

Emphasis in EGEE is on operating a production Grid and on supporting the end-users.

- Provide access to and operate a production grid infrastructure
 - Different user communities -> multiple Vos
 - Facilities in Europe and other collaborating sites
 - Make best use of existing grid initiatives
 - Build upon EGEE 1 experience

• What is needed to achieve this?

Key Objectives

Enabling Grids for E-sciencE

- **1.** Core Infrastructure Services
 - IS, data management, VO, (driven by Vos)
- 2. Monitoring and Control
 - Performance, operational state
 - Initiate corrective actions

3. Middleware Deployment

- Integrate, certify, package middleware components Support for new resources, setup and operation
- Feedback with middleware activities in and outside of EGEE

4. User and resource support

- Receive problem reports
- Coordinate operational problem resolution

5. Grid management

- Co-ordination of the implementation with the ROCs
- Negotiation of SLAs
- Keep in contact with the wider Grid community
 - Liaison, participate in standard bodies

6. International Collaboration

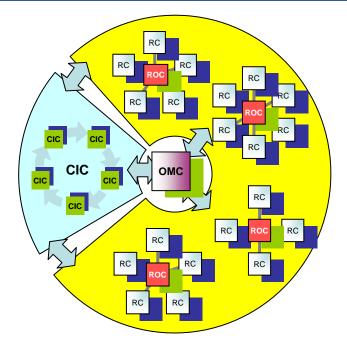
Interoperability with large scale grids in the US and Asia-Pacific region Seamless access for the EGEE user community to resources

7. Capture and provide requirements

Relevant for operations, deployment and (some aspects of) security Follow-up

Contents

- Scope an purpose of the activity
- Organisation
- Major tasks
- Interaction points with


• Simplification

eGee

- EGEE 1 structure
 - OMC, CICs, ROCs, RCs
- EGEE 2 (the future)
 - Operations Coordination Centre

Enabling Grids for E-sciencE

- Regional Operations Centres
- Resource Centers
- What happened to the CICs?
 - All CICs are co-located with ROCs
 - Some ROCs provide CIC services
- ===> Adjust the structure to current practice
 - Basic ROCs and ROCs with CIC functions
 - Easy transition, different set of services

Operations Coordination Centre

- Core responsibilities
 - Middleware integration, certification, distribution packs
 - Coordinate:

eGee

- Deployment and support
- Grid operation and support

Enabling Grids for E-scie

- User support activity
- Operational security activity
- SLAs (negotiate & monitor)
- Interoperability
 - Non EGEE regions
 - ROCs more focussed on national/regional grids
- Act as a ROC
 - Current CIC functions (10+ RBs....)
 - ROC for RCs in non EGEE regions
- Located at CERN

- Support ALL sites in their region
 - EGEE partners and friends
- Core Responsibilities (incomplete) -----> ALL ROCs
 - 1st line user support (Call centre, regional training..)
 - 1st line operational support (ROC "owns" operational problems)
 - Coordination
 - Deployment of middleware releases to its RCs
 - With national and regional grid projects
 - Regional Grid security (Incident responds teams (with RCs))
 - Negotiate resources for new VOs
 - Manage SLAs
 - Run infrastructure services
 - Support EGEE production AND pre-production services

eGee

Regional Operations Centres II

Enabling Grids for E-sciencE

- Additional Roles
 - Who?
 - Current CICs & ROCs with sufficient resources and expertise
 - Operations management
 - Operations Center on duty shifts
 - Monitoring, management, troubleshooting
 - Improve, develop and run tools
 - User support management
 - Coordinate Joint Security Policy Group (now @ RAL)
 - Run additional grid services (including VO specific)
 - Collaborate in the release process
 - Specific aspects of certification, porting, …
 - Security vulnerability and risk analysis (NEW)
 - Coordinate (partial) code reviews, best practice,...

ROC concept can serve in non EGEE regions as an operation model

Contents

- Scope an purpose of the activity
- Organisation
- Major tasks
- Interaction points

- Overall:
 - Operate Production and Pre-Production Service
 - Some tasks implicit described with ROCs and OCC roles
- Middleware testing and certification
 - Where?
 - Central coordination, some external contribution
 - Expected Results
 - Middleware distributions for production
 - Select components from within <u>and</u> external sources
 - Negotiate support
 - Integration and testing could be a joint activity with JRA1
 - Testing needs to start from day 1 (sufficiently staffed)
 - Certification
 - Integrated system
 - Co-existence/Interoperability
 - Deployability, functionality, configuration, management of components
 - Extended set of OSs
 - Optional integration with Virtual Data Toolkit (VDT) --> ensures US interop.

- Testbeds
 - Set of testbeds at CERN for rapid setup
 - Regions contribute to well defined aspects
 - Deployment tests
 - MPI support
 - Batch systems
 - Ports to different architectures

egee

Tasks III

Middleware deployment and support

Enabling Grids for E-sciencE

- OCC coordination, ROCs coordinate and support their RCs
- Expected Results
 - Deploy agreed set to all sites
 - Region can support supersets (but NOT subsets)
 - Stick to agreed schedule
- Service Layers (new)
 - Core services (CE, SE, Local Catalogues...)
 - Long update cycles (1--> 2 times a year + security driven updates)
 - At all sites
 - Additional Services (Central Catalogues, IS, Monitoring, RBs)
 - Not present at all sites (mainly some ROCs)
 - Shorter update cycles (on demand?)
 - Client tools on WNs
 - Installed in user space
 - New version made available by a central team
 - VOs select preferred version
- Ongoing work on simplification of installation and configuration

- Grid Operations and Support
 - OCC & ROCs
 - Expected Results
 - Manage the grid operation
 - Has been included in the description of the ROCs and OCC's roles

Tasks V

- Grid security and incident responds
 - Security Coordination Group
 - Central coordination of incident response
 - Security Coordination Group
 - Lead by:
 - EGEE Security Head (PEB member) +
 - Middleware Security Architect
 - Chair of the Joint Security Policy Group (SA1)
 - Chair of the EUGridPMA
 - Expected Results
 - Coordination of security related aspects of:
 - o Architecture
 - o Deployment
 - o Operation
 - o Include standardization work

Tasks VI

- Grid security and incident responds
 - Security Coordination Group
 - Central coordination of incident response
 - Central coordination of incident response
 - Coordinated at the OCC
 - ROCs coordinate the incident responds in their region
 - Requires resources at all RCs and ROCs
 - Needs a strong mandate
 - Expected Results
 - Minimize security risks by fast responds
 - Ensure best practice
 - EGEE wide team to react on security incidents
 - o Members from ROCs/RCs

eGee

Tasks VII

Enabling Grids for E-sciencE

- Support: Virtual Organizations, Applications, Users
 - Central coordination at OCC and all ROCs

• Expected Results

- User support
 - Distributed
 - Each ROC provides front-line support for local users
 - Each ROC contributes to the overall user support (experts)
 - VOs provide user support
 - VO filters problems
 - Existing help desks at major centres should be integrated into the support structure
 - Filter and inject problems into the grid support

User Support

- Call centers and helpdesks
 - ROCs
- Training
 - ROCs
- VO support and integration
 - NA4 with teams like the LCG-EIS

We have currently not a good model for user support

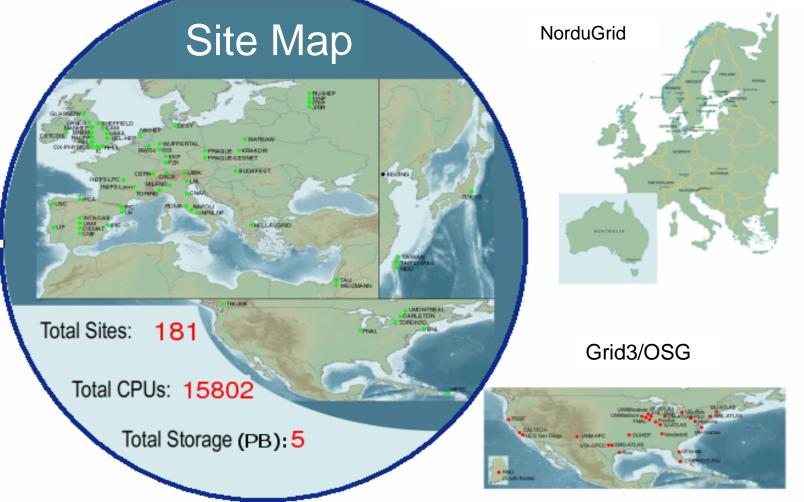
- Some experience from LCG (can this be mapped???)
- Needs resources from ROCs, OCC and VOs

- Grid Management
 - See OCC and ROCs roles
 - ROC coordinator must have a strong presence at the OCC
- Interoperation
 - See OCC and ROCs roles
 - ROCs focus on national/regional grids
 - OCC non EGEE regions
 - Coexistence and common policies have to be clarified
 - NA4 has to participate in the definition of "seamless"
- Application <----> Resource Provider Coordination
 - See OCC and ROCs roles
 - Some resources should be made available to (most) all applications
 - This could become part of the SLAs (opportunistic usage?)
 - Needs clarification
- Application <-> RC <-> Middleware Coordination
 - SA1 needs to be part of this
 - ROCs aggregate regional feedback
 - Coordination ?

Contents

- Scope an purpose of the activity
- Organisation
- Major tasks
- Interaction points

Interactions


- JRA1
 - Integration and testing
 - Security
 - Deployment and operational requirements
 - Training
- JRA2
 - Work on QA metrics for operations
 - Link of QA and monitoring
- NA4
 - Resource negotiation
 - Security
 - Production Middleware Stack definition
 - User Support
 - Training
- NA3
 - Receiving and providing training (SA1 has provided significant training)
- SA2
 - Link between network operation center and grid operations

EGEE Infrastructure

Enabling Grids for E-sciencE

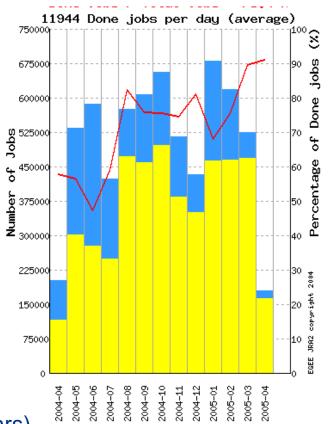
In collaboration with LCG

Status 25 July 2005

INFSO-RI-508833

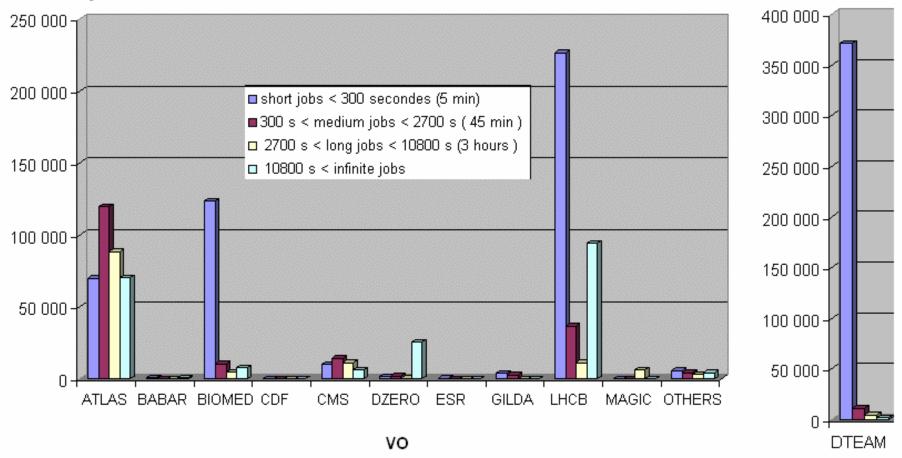
Grids@work, Sophia Antipolis, 10.10.2005 22

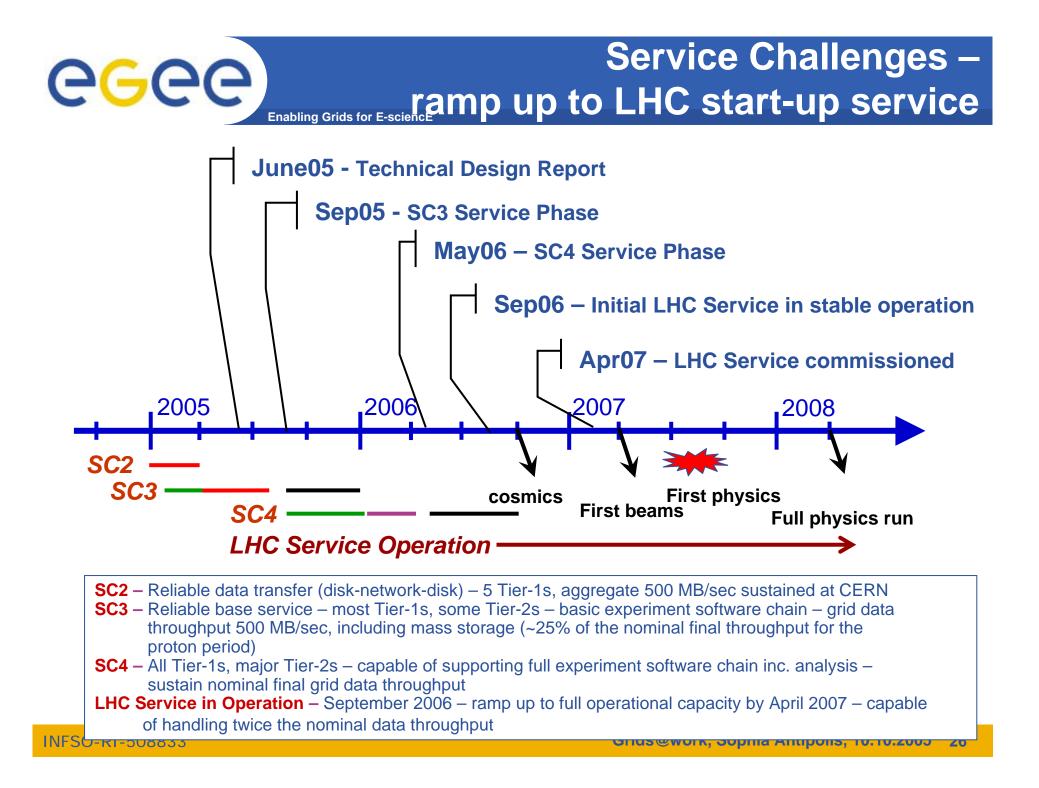
- Operation of Production Service: real-time display of grid operations
- Accounting Information
- Selection of Monitoring tools:
 - GIIS Monitor + Monitor Graphs
 - Sites Functional Tests
 - GOC Data Base
 - Scheduled Downtimes


- Live Job Monitor
- GridIce VO + Fabric View
- Certificate Lifetime Monitor

Service Usage

- VOs and users on the production service
 - Active VOs:
 - HEP: 4 LHC, D0, CDF, Zeus, Babar
 - Biomed
 - ESR (Earth Sciences)
 - Computational chemistry
 - Magic (Astronomy)
 - EGEODE (Geo-Physics)
 - Registered users in these VO: 800+
 - + Many local VOs, supported by their ROCs
- Scale of work performed:
 - LHC Data challenges 2004:
 - >1 M SI2K years of CPU time (~1000 CPU years)
 - 400 TB of data generated, moved and stored
 - 1 VO achieved ~4000 simultaneous jobs (~4 times CERN grid capacity)


Months


Number of jobs processed per month (April 2004-April 2005)

Average job duration January 2005 – June 2005 for the main VOs

Number of jobs

Why Service Challenges?

Enabling Grids for E-science

To test Tier-0 \leftarrow \rightarrow Tier-1 \leftarrow \rightarrow Tier-2 services

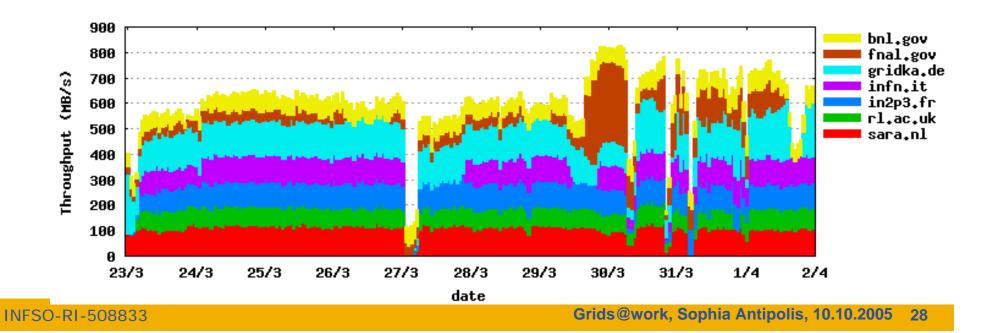
Network service

- Sufficient bandwidth: ~10 Gbit/sec
- Backup path
- Quality of service: security, help desk, error reporting, bug fixing, ...

Robust file transfer service

- File servers
- File Transfer Software (GridFTP)
- Data Management software (SRM, dCache)
- Archiving service: tapeservers, taperobots, tapes, tapedrives, ...

Sustainability


- Weeks in a row un-interrupted 24/7 operation
- Manpower implications: ~7 fte/site
- Quality of service: helpdesk, error reporting, bug fixing, ...
- Towards a stable production environment for experiments

egee

 >600MB/s daily average for 10 days was achieved -Midday 23rd March to Midday 2nd April

Enabling Grids for E-sciencE

- Not without outages, but system showed it could recover rate again from outages
- Load reasonable evenly divided over sites (give network bandwidth constraints of Tier-1 sites)

egee

Straw-man migration plan to gLite

Enabling Grids for E-sciencE

1) Certification test-bed

- Core functionality tested, some stress tests.
- Threshold for moving to preproduction:
 - Functionality of gLite at least that of LCG-2
 - The stability not worse than than (80)% of LCG2 on the same test-bed
 - Performance: The core functions (job submission, file reg., file lookup, file delete, data movement..) should not be less than (50)% of LCG-2

2) Pre-production

- Thresholds as for the certification testbed.
- In addition: scalability testing.
- Applications: Overall perceived usability has to be comparable with LCG-2

3) Once thresholds achieved:

- LCG-2 is frozen,
 - except for security fixes.
 - No porting to new OS releases. This ensures that LCG-2 will be phased out with current version of OS

- 4) Introduction to Production:
 - Major sites deploy gLite CEs in parallel with the LCG-2 CEs.
 - WNs provide client libs for both stacks.
 - Some of the smaller sites convert fully to gLite.
 - Incrementally, until (50)% of the resources are available through gLite.
 - Re-apply threshold tests as on preproduction (stricter?).
- 5) Final steps
 - Migrate catalogues and data (if needed). Takes ~3 months.
 - All smaller sites convert to gLite.
 - Larger sites continue to provide access to LCG-2 data
 - However the LCG-2 SEs are made read-only to encourage migration of applications.
- Keeps LCG-2 as viable fall-back
- Avoids having to state a drop-dead date for LCG-2 but sets conditions
- Provides migration environment for applications