Search for H→WW*→llvv - Higgs Production - Monte Carlo Samples - Data Sample - Selection Criteria - Efficiencies - Background - Systematics - Upper Limits - Summary Submitted to PRL hep-ex/0508054 Fermilab-Pub-05/377-E ## **Higgs Production** #### Standard Model Higgs - Four different processes - Gluon fusion (dominant) and Higgstrahlung at the Tevatron - NLO predict for $M_H \sim 100-200$ GeV $\sigma(pp \rightarrow H) \times BR(H \rightarrow WW^*) \sim 11-250$ fb - M_H<135 GeV - Higgs decays primarily into bb with branching fraction 70-90% for M_H<125 GeV - M_H>135 GeV - Higgs decays primarily into WW with branching fraction >90% for M_H~160 GeV - Extensions of the SM including a 4th fermion family predict an enhanced Higgs boson production cross section - E. Erik et al., PRD 66, 2002 - O. Cakir and S. Sultansoy, PRD 65 (2002) ### Monte Carlo Signal MC for six Higgs masses from 100 to 200 GeV | M _H (GeV) | | 100 | 120 | 140 | 160 | 180 | 200 | |-------------------------|--------------|-------|-------|-------|-------|-------|-------| | $\sigma \times BR$ (pb) | SM | 0.011 | 0.089 | 0.207 | 0.256 | 0.181 | 0.101 | | | 4^{th} Gen | 0.066 | 0.471 | 1.217 | 2.017 | 1.471 | 0.804 | #### **Background MC** - Vector Boson Pair Production - WW, WZ, ZZ - Vector Boson Production - Drell-Yan: Z/ $\gamma^* \rightarrow ee \mu \mu, \tau \tau$ - W(\rightarrow e μ)+Jets, W(\rightarrow e μ)+ γ - Other Backgrounds - tt, mult-jet production (from data), Y \rightarrow ee $\mu \mu$ ## H→WW* Candidates - Search for H→WW*→Ilvv - $l = e, \mu, \tau$ - Tau decays detected by their leptonic decay modes to electrons and muons - Data collected by the D0 detector from April 2002 through June 2004 - Integrated luminosities are 325, 318 and 299 pb⁻¹ for the e⁺e⁻, e⁺µ⁺, or µ⁺µ⁻ final states respectively - Select events by single or dilepton triggers using three tiered trigger system #### Electrons - Isolated EM shower in Calorimeter - Spatial track match - $|\eta| < 3.0$ #### Muons - Reconstructed from hits in the wire chambers and the scintillators - Match to central track - $|\eta| < 2.0$ #### Two W bosons - Two oppositely charged isolated leptons from same primary vertex with high transverse momentum - Large missing transverse energy - Some selection cuts are M_H dependent to account for signal kinematic characteristics ### **Selection Criteria** - Preselection cuts - Trigger, Object ID, oppositely charged leptons - p_T>15 (10) GeV for leading (trailing) lepton - ₽_T>20 GeV - Suppresses dominant Z/γ* bkg - Scaled ₹_T>15 GeV - Remove bkg due to large contributions from mismeasured jet energy - Invariant mass cut - m_{ee} < min(80 GeV, $M_H/2$) - 20 GeV < $m_{\mu\mu}$ < $M_H/2$ - Remove J/Ψ, Y, Z/γ* - Sum of p_T of the leptons and ₱_T, and the transverse invariant mass cuts - Rejects W+jets/γ and WW events, and further reduces Z/γ* - Scalar sum of the transverse energies of the jets, H_T<100 GeV - $p_T > 20 \text{ GeV}, |\eta| < 2.5$ - Suppresses bkg from tt production - Azimuthal opening angle between the two leptons $\Delta \phi_{II} < 2.0$ - Remove remaining Z boson and multijet bkg which exhibit back-toback topology - Not the case for Higgs boson decays because of spin correlations ## Data & MC Azimuthal Opening Angle - Top: After initial transverse momentum cuts - Bottom: After final selection except for Δφ₁₁ criteria ### **Efficiencies** | $M_H \text{ (GeV)}$ | ee | $e\mu$ | $\mu\mu$ | |---------------------|-----------------|-----------------|-----------------| | 100 | 0.56 ± 0.05 | 1.02 ± 0.06 | 0.44 ± 0.03 | | 120 | 1.18 ± 0.09 | 2.0 ± 0.1 | 1.02 ± 0.06 | | 140 | 1.55 ± 0.08 | 2.9 ± 0.2 | 1.34 ± 0.08 | | 160 | 2.1 ± 0.1 | 3.9 ± 0.2 | 2.0 ± 0.1 | | 180 | 2.1 ± 0.1 | 3.9 ± 0.2 | 1.68 ± 0.09 | | 200 | 1.57 ± 0.09 | 3.2 ± 0.1 | 1.53 ± 0.07 | | | | | | - Overall detection efficiencies include statistical & systematic uncertainties in quadrature (in %) - H→WW*→llvv events determine using PYTHIA 6.2 event generator with GEANT-based simulation of the D0 detector - Trigger, reconstruction and identification derived from data. - Kinematic acceptance efficiency derived from MC # Signal and Background | $M_H({ m GeV})$ | 100 | 120 | 140 | 160 | 180 | 200 | |-------------------------|-------------------|-------------------|-------------------|-----------------|-------------------|-------------------| | $H o WW^{(*)}$ | 0.007 ± 0.001 | 0.125 ± 0.002 | 0.398 ± 0.008 | 0.68 ± 0.01 | 0.463 ± 0.009 | 0.210 ± 0.004 | | Z/γ^* | 7.9 ± 1.1 | 7.5 ± 1.0 | 3.8 ± 0.6 | 4.0 ± 0.7 | 6.6 ± 0.9 | 9.9 ± 1.1 | | Diboson | 4.4 ± 0.2 | 8.1 ± 0.2 | 11.7 ± 0.3 | 12.3 ± 0.3 | 11.6 ± 0.3 | 9.6 ± 0.3 | | $t ar{t}$ | 0.03 ± 0.01 | 0.11 ± 0.02 | 0.29 ± 0.02 | 0.47 ± 0.03 | 0.66 ± 0.05 | 0.72 ± 0.05 | | $W+\mathrm{jet}/\gamma$ | 16.9 ± 2.2 | 14.2 ± 2.1 | 5.8 ± 1.2 | 2.8 ± 0.9 | 0.7 ± 0.5 | 0.7 ± 0.5 | | Multi-jet | 0.6 ± 0.3 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.1 | | Background sum | 29.9 ± 2.5 | 30.1 ± 2.3 | 21.8 ± 1.4 | 19.7 ± 1.2 | 19.8 ± 1.1 | 21.2 ± 1.2 | | Data | 27 | 21 | 20 | 19 | 19 | 14 | - After all selections, with only statistical uncertainties given - Using the NLO cross sections calculated with HIGLU (M.Spira hep-ph/9510347) and HDECAY (A. Djouadi et al., CPC108,1998), and the branching ratio of 0.1068 ± 0.0012 for $W\rightarrow lv$ (all three channels combined) - Z/γ^* , W+jets/ γ , tt, WW, WZ, ZZ estimated using PYTHIA normalized to NLO cross sections - W+jets/γ contributions verified using ALPGEN - Background due to multi-jet production determined from data using a sample of like-sign di-lepton events with inverted lepton quality cuts ## **Systematics** | | ee | | $e\mu$ | | $\mu\mu$ | | |-------------------|--------|---------------------|--------|------------------|----------|------------------| | $M_H(\text{GeV})$ | Signal | BG | Signal | $_{\mathrm{BG}}$ | Signal | $_{\mathrm{BG}}$ | | 100 | 8.3 | 9.5 | 6.4 | 11.4 | 7.8 | 7.2 | | 120 | 8.3 | 8.6 | 6.7 | 13.6 | 7.3 | 7.5 | | 140 | 6.4 | 6.7 | 6.9 | 13.6 | 7.2 | 8.3 | | 160 | 6.6 | 7.3 | 6.7 | 12.0 | 7.1 | 8.3 | | 180 | 6.9 | 10.3 | 6.6 | 13.0 | 7.3 | 14.6 | | 200 | 6.8 | 10.6 | 6.1 | 12.3 | 6.9 | 18.1 | - Total systematic uncertainties (in %) - Excludes 6.5% contribution from luminosity uncertainty - Largest contributions - Background - Jet energy scale for low Higgs masses due to the large W+jet/ γ background, and W boson pair production for high Higgs masses - Signal - Parton distribution function ## **Expected & Observed Upper Limits** - Modified frequentist method - T. Junk, NIM A434, 1999. - Combination of three decay channels for six different Higgs boson masses - Different values are due to different bkg expectations & signal efficiencies - Best limits achieved for large Higgs masses as S↑ & B↓ M_H (GeV) 100 120 140 160 180200Expected limits (pb) 20.3 9.55.93.9 4.54.0 Observed limits (pb) 18.55.64.93.74.13.2 ## Summary - Searched for the Higgs boson in the H→WW*→llvv decays in e⁺e⁻, e[±]μ[±], and μ⁺μ⁻ final states - Integrated luminosity ~ 300-325 pb⁻¹ - Data is consistent with the expectation from background - No excess has been observed - 95% CL Limits on the production cross section times branching ratio have been derived for six different Higgs boson masses - Observed and expected cross section limits are compared to predictions from the SM and from an extension including a fourth fermion family - With this analysis, we are a factor of 2 below expected sensitivity per Higgs sensitivity report - See talk by Gregorio Bernardi - For Winter/Spring 2006 conferences - Increased lepton efficiency - Improved calorimetry, tracking, Monte Carlo - Increased luminosity by factor of ~3 ## **Selection Criteria** | | Selection criterion | Value | |-------|---|---| | Cut 1 | Preselection | Trigger, ID, leptons with opposite charge | | | | and $p_T^{\ell_1} >$ 15 GeV and $p_T^{\ell_2} >$ 10 GeV | | | | $(m_{\mu\mu}>20{ m GeV})$ | | Cut 2 | Missing transverse energy $E_T\!$ | $E_T > 20{\rm GeV}$ | | Cut 3 | Scaled $ ot\!$ | $E_T^{Sc} > 15$ (for $N_{Jet} > 0$) | | Cut 4 | Invariant mass $m_{\ell\ell}$ | $m_{\ell\ell} < { m M_H/2GeV}$ (80 GeV) | | Cut 5 | Sum of $\mathrm{p_{T}}$ and E_{T} | $M_{\rm H}/2 + 20(10){ m GeV} < p_T^{\ell_1} + p_T^{\ell_2} + E_T < M_{ m H}$ | | Cut 6 | Transverse mass $m_T^{\ell\ell}$ | $M_{\rm H}/2 < m_T^{\ell\ell} < M_{\rm H} - 10{ m GeV}$ | | Cut 7 | H_T (scalar sum of p_T^{Jet}) | $H_T^{Jet} < 100 GeV$ | | Cut 8 | Lepton opening angle $\Delta\phi_{\ell\ell}$ | $\Delta \phi_{\ell\ell} < 2.0$ | $$E_T^{\text{Sc}} = \frac{E_T}{\sqrt{\sum_{\text{jets}} \left(\Delta E^{\text{jet}} \cdot \sin \theta^{\text{jet}} \cdot \cos \Delta \phi \left(\text{jet}, E_T\right)\right)^2}}$$ $$m_T^{\ell\ell'} = \sqrt{2p_T^{\ell\ell'}E_T(1-\cos\Delta\phi(p_T^{\ell\ell'},E_T))}$$