Transverse momentum resummation in $b\overline{b} \rightarrow H$

Pavel Nadolsky Argonne National Laboratory

 $\square q_T resummation in a massive$ variable flavor number (S-ACOT) scheme

- P. N., N. Kidonakis, F. Olness, C.-P. Yuan, Phys. Rev. D67, 074015 (2003)
- Tevatron and LHC phenomenology
 - O Overview of the method + W, Z, and (some) Higgs production
 - S. Berge, P. N., F. Olness, hep-ph/0509023
 - ▷ early results shown at LoopFest 3, April 2004
 - O inclusive $b\overline{b} \rightarrow H$ in SM and MSSM
 - ▷ A. Belyaev, P. N., C.-P. Yuan, hep-ph/0509100
 - \bigcirc NLL resummation for $b\overline{b} \rightarrow Hb$ (B. Field's talk)

Massive 4-flavor and massless 5-flavor schemes in $b + \overline{b} \rightarrow H + Nb$ (N = 0, 1, or 2): which scheme is correct?

Sometimes both (e.g. σ_{tot} for $M_H \ll$ 1 TeV)

Dawson, Jackson, Reina, Wackeroth, hep-ph/0408077

 M_H , Q, and q_T are Higgs mass, virtuality, and transverse momentum

Massive 4-flavor and massless 5-flavor schemes in $b + \overline{b} \rightarrow H + N b$ (N = 0, 1, or 2): which scheme is correct?

Sometimes both (e.g. σ_{tot} for $M_H \ll$ 1 TeV)

Dawson, Jackson, Reina, Wackeroth, hep-ph/0408077

 M_H , Q, and q_T are Higgs mass, virtuality, and transverse momentum

this talk -

Perplexing collinear *b*-quarks: why both schemes fail at $q_T
ightarrow 0$

- \Box Collinear b's are easily produced at $Q \sim M_H \gg m_b$
- □ Collinear logs $In^p(Q/m_b)$ must be resummed in the *b*-quark p = PDF's (4-flavor scheme)
- □ Soft and collinear logs $\ln^{p'}(Q^2/q_T^2)$ must be resummed at $q_T \rightarrow 0$ using the Collins-Soper-Sterman (CSS) resummation

$$egin{aligned} \left(rac{d\sigma}{dec q_T}
ight)_{q_T o 0} &\propto & |\mathcal{H}(Q)|^2 \int dec k_{ST} \, dec k_{1T} \, dec k_{2T} \, \delta(ec k_{ST}+ec k_{1T}+ec k_{2T}-ec q_T)) \ & imes & \mathcal{S}(Q,ec k_{ST}) \, \mathcal{P}_{b/p}(x_1,ec k_{1T}) \, \mathcal{P}_{\overline{b}/p}(x_2,ec k_{2T}) \end{aligned}$$

The unintegrated bottom PDF's $\mathcal{P}_{b/p}(x, \vec{k}_T)$ depend on $k_T \in [0, \infty]$ Non-negligible dependence on m_b at $k_T \lesssim m_b!$

massless 5-flavor scheme

CSS resummation in a massive 5-flavor (S-ACOT) scheme

 \Box resums all large logs $\ln(q_T^2/Q^2)$

 \Box keeps the essential m_b dependence; drops the non-essential m_b dependence (simplifications!)

 \Box realized at $\mathcal{O}(\alpha_s)$ /NNLL accuracy

 \Box is matched on the 5-flavor finite-order result at $q_T \sim Q$

□ uses a new nonperturbative Sudakov function (KN'2005)

- O agreement with IR-renormalon estimates
- **O** reduced uncertainties and flavor dependence

CSS cross sections in impact parameter (b) space

$$\frac{d\sigma}{dQ^2 dy dq_T^2} \bigg|_{q_T^2 \ll Q^2} \propto |\mathcal{H}(Q)|^2 \int \frac{d^2 b}{(2\pi)^2} e^{-i\vec{q}_T \cdot \vec{b}}$$

$$\times e^{-S(b,Q)} \overline{\mathcal{P}}_{b/p}(x_1, b, m_b) \overline{\mathcal{P}}_{\overline{b}/p}(x_2, b, m_b)$$

where

$$\overline{\mathcal{P}}_{b/p}(x,b,m_b) \equiv \sum_{i=g,u,d...} \left[\mathcal{C}_{b/i} \otimes f_{i/p} \right] (x,b,m_b;\mu_F)$$

 $f_{i/p}(x,\mu_F)$ (with $\mu_F=b_0/b\sim 1/b$) are the conventional PDF's m_b dependence is

 \Box kept in $\overline{\mathcal{P}}_{b/p}(x,b,m_b)$

 \Box dropped in S(b,Q) and other terms (rules of S-ACOT scheme)

 \Box S(b,Q) and $C_{ai}(x_A, b, m_b; \mu_F)$ are approximated well in PQCD

 $\overline{\mathcal{P}}_{b/p}(x, b, m_b)$: S-ACOT calculation vs. a naive massless calculation

- □ There is no unique way to define $\overline{\mathcal{P}}_{b/p}(x, b, m_b)$ at $b \gtrsim 1/m_b$ in the massless 5-flavor scheme ($\mathcal{C}_{b/i}$ are not computable; \Rightarrow arbitrary $d\sigma/dq_T$)
- □ Earlier studies (e.g. Balazs, He, Yuan, 1998) have used an effective massless approximation ("ZM-VFN")
- We would like to see how much the approximate "ZM-VFN" result deviates from the exact S-ACOT result

 $\overline{\mathcal{P}}_{b/p}(x, b, m_b)$: S-ACOT vs. "ZM-VFN"

Massive (S-ACOT) $\overline{\mathcal{P}}_{b/p}(x,b)$

 \Box reduces to the massless result at $b^2 \ll 1/m_b^2$ ($\mu_F^2 \gg m_b^2$)

 \Box vanishes at $b^2 \gg 1/m_b^2$ (decoupling of b-quarks)

lacksquare is automatically continuous at the switching point ($\mu_F=m_b$)

 m_b dependence vs. the Sudakov suppression (on the example of $\widetilde{W}(b,Q)$ for $b\overline{b} \to Z^0$)

□ The most pronounced m_b dependence is seen at the Tevatron for Q < 100 - 200 GeV

Variations in $d\sigma/dq_T$ due to mass effects

Tevatron, $M_H = 120$ GeV: the "ZM-VFN" peak is shifted by 2 GeV ($\approx 17\%$) w.r.t. to the S-ACOT peak

m_H (GeV)		120	250	600
Position of the	"ZM-VFN"	15.4	16.8	18.8
maximum (GeV)	S-ACOT	14.1	15.8	18.2
Difference in the positions (GeV)		1.3	1.0	0.6

Peak shifts at the LHC

Kinematical effects at $q_T \approx M_H$

 $f_{b/p}(x,\mu_F)$ is a rapidly varying function of x and μ_F

 \Rightarrow Approximate phase space in NNLL $\widetilde{W}(x_1, x_2, b, Q)$ must be chosen carefully to obtain trust-worthy $d\sigma/dq_T$ at $q_T \approx Q$

We correct for the PS approximation by assuming $\sqrt{O^2 + r^2}$

 $x_{1,2} \equiv \frac{\sqrt{Q^2 + q_T^2}}{\sqrt{s}} e^{\pm y}$ in $\widetilde{W}(x_1, x_2, b, Q)$

The effect of the kinematical correction is comparable to the effect of momentum conservation in parton showering (Pythia)

Conclusions

 $\hfill \hfill \hfill$

 $\hfill\square$ Dependence on $m_{c,b}$ leads to softer q_T distributions in $b\overline{b} \to H$ at the Tevatron and LHC

 $\hfill \hfill \hfill$

