#### **WBF Higgs Physics at the LHC**

- What can be learned from the Tevatron -

Michael Dührssen University of Freiburg, Germany

Fermilab, TeV4LHC, October 2005

- Introduction / Motivation
- Discovering the Higgs at the LHC
  - Inclusive  ${\rm H} \to \gamma\gamma$  and  ${\rm H} \to {\rm ZZ}$
  - gg  $\rightarrow$  H  $\rightarrow$  WW
  - WBF H ightarrow au au
  - $WBF H \longrightarrow WW$
- Summary

# **Introduction - Higgs Boson Production at LHC**



#### **Introduction - Higgs Boson Decays**

 $110~{\rm GeV} \lesssim m_H \lesssim 150~{\rm GeV}$  :  $135~{\rm GeV} \lesssim m_H$  :

• close to LEP limit, discovery is most problematic for LHC



 $180~{
m GeV} \lesssim m_H$  :

•  $H \rightarrow ZZ$  golden channel

• search for  $H \rightarrow WW$ , ZZ

• total width measureable



#### **Introduction - Higgs Boson Discovery Potential**



Main discovery channels:  $m_H \gtrsim 2 m_Z$ : GF : H  $\rightarrow$  ZZ WBF :  $H \rightarrow ZZ$  $H \rightarrow WW$  $m_H \lesssim 2 m_Z$ : GF: H  $\rightarrow \gamma \gamma$  $H \rightarrow ZZ$  $H \rightarrow WW$  $t\bar{t} H : H \rightarrow bb$  $WBF : H \rightarrow WW$  $H \rightarrow \tau \tau$ **Dicovery Potential based on** 

**LO predictions** 

### Introduction - Early discovery of a light Higgs

- where Tevatron enters the game -

#### The most promising channels and the main challenges :



### $extsf{H} o \gamma \gamma$

#### Challenges for the detector :

- needs very good calorimeter mass resolution  $\sigma_{\rm CMS} \approx 800~{\rm MeV}$
- needs very good photon/jet rejection (fake rate  $\approx$  1/10.000)



#### Challenges for theory (NLO MC tested/tuned against Tevatron data):

- $\gamma\gamma$ ,  $\gamma$ -jet and jet-jet background very difficult to estimate
- matching of photon isolation in theory and experiment not trivial

But :

can take background from data !



# $\mathbf{H} \rightarrow \mathbf{WW} \rightarrow l \nu \ l \nu$

#### Channel with largest statistical potential ( $m_H \approx$ 160 GeV):

- No Higgs resonance visible
- Main backgrounds: tt and WW learn from Tevatron: check W+jets/ $\gamma$
- tt : reduce by jet veto, b-jet veto
- WW : different spin correlations most significant :  $\Delta \phi$  of leptons  $l^- H W^+ - l^+$



- need to know shape of WW
- need to know contribution from  $gg \rightarrow WW$
- Need to know bg. at pprox 5% level !



### $\mathbf{H} \rightarrow \mathbf{WW} \rightarrow l \nu \ l \nu : \mathbf{gg} \rightarrow \mathbf{WW}$ background

#### From Les Houches Workshop 2005 (dedicated workgroup)

- Part of NNLO for qq̄→WW
   σ(gg→WW) only 5% of σ(WW) before cuts, but ≈ 30% after cuts → very signal like
- too small at Tevatron

 $gg \rightarrow W^{-*}W^{+*} \rightarrow \ell \bar{\nu} \bar{\ell'} \nu'$  (LO)



 Sytematic normalization of background is limiting this channel



Michael Dührssen, From Tevatron to Higgs Physics at the LHC – p.8

#### Weak Boson Fusion WBF (VBF)







### Higgs Decay $\eta$

#### Extra Signature:

- 2 high  $p_T$  forward jets (large  $\Delta \eta$ )  $\rightarrow$  tagging jets
- Jet veto in central region
- large  $M_{jj}pprox$  0.5 1 TeV
- Higgs decay products between tag jets

#### WBF H ightarrow au au

- Dominant discovery channel for a light Higgs ( $m_H \lesssim$ 135 GeV)
- Dominant background from Zjj
- Main experimental challenges :
  - forward jet reconstruction
  - pile up and central jet veto
  - Z  $\rightarrow \tau \tau$  shape
- Main theoretical challenge for the backgrounds :
  - correct description of tagging jets
  - correct description for 3rd jet
- But : shape of  $Z \rightarrow \tau \tau$  background can be taken from data

Most important jet cuts :

- $p_T(j_1) > 20 50 \text{ GeV}$
- $p_T(j_2) >$  20 30 GeV
- $\Delta\eta(jj)>$  3.5 4.5
- M(jj) > 600-700 GeV
- jet veto :  $p_T > 20~{\rm GeV}$   $|\eta_3| <$  3.2 or



# Test of WBF like jets: Zeppenfeld plot

For the background MC we want

- tagging jets from matrix element (ME)
- 3rd jet (for jet veto) is soft :
   ME or parton shower (PS) ?
- define  $\eta_3^* = \eta_3 \frac{\eta_1 + \eta_2}{2}$
- parton shower predicts 3rd jet close to tagging jets
- ME predicts central 3rd jet
   → better background rejection



 $\rightarrow$  Combine both : CKKW or MLM matching of PS and ME

Tevatron plays a key role : can test jet distributions in W/Z+N jets !

#### MLM matching (M. Mangano at TeV4LHC)



#### W + jets at CDF

- WBF H not visible at Tevatron, but backgrounds for WBF can be tested
- Analysis of W+jets events at CDF performed (B. Cooper and J. Huston), results will be released soon
  - select events with two jets at large  $\eta$  seperation
  - look at the 3rd jet (if any)
- Test data against various MC prediction
  - Alpgen + Herwig (no MLM matching)
  - Matched W + N jet events produced by S. Mrenna (Madgraph/Madevent + Pythia)
  - MCFM W +2 jets at NLO (W + 3 jets at LO)

#### W + jets at CDF : $\Delta\eta$ of tag jets

#### $\Delta\eta$ of tag jets for two different tag jet $E_T$ cuts



## W + jets at CDF : $\eta^*$ for $\Delta\eta>1$



# W + jets at CDF : $\eta^*$ for $\Delta\eta>1$



Dip fills in as tag jet  $E_T$  increases

Just some examples, a lot of interesting work in progress...
 Want more ? Please have a look at Joey Hustons talk this

afternoon

# At LHC : MLM Z+2j exclusive (CMS preliminary\*

#### ALPGEN+PYTHIA Z+2j before and after MLM exclusive matching



#### 4500 Z2J ALPGEN with VBF preselections N reco jets E<sub>T</sub>>20 GeV

#### before MLM matching, $\sigma$ =5.91pb



#### after MLM matching, $\sigma$ =1.04pb



η of reco jets, Michael Dührssen, From Tevatron to Higgs Physics at the LHC – p.17

# MLM Z+3j inclusive (CMS preliminary)

#### ALPGEN+PYTHIA Z+3j before and after MLM inclusive matching



#### before MLM matching, $\sigma$ =5.42pb





#### after MLM matching, $\sigma$ =2.52pb



Michael Dührssen, From Tevatron to Higgs Physics at the LHC - p.18

#### MLM Z+2j/3j: $\eta^*$ distribution (CMS preliminary)

Zeppenfeld plot  $\eta^* = \eta_3 - \frac{\eta_1 + \eta_2}{2}$ 





# Z+2j-4j : Stability check (ATLAS preliminary\*)

ALPGEN+PYTHIA Z+2j/3j with MLM and Z+2j/3j/4j with MLM

Check if approach is consistent : add more jets

- Preliminary study based on ATLFAST
- compare MLM Z+2j-3j with MLM Z+2j-4j after tag jet selection and cuts
- after central jet veto no contribution from

Z+4j left





# WBF H $\rightarrow$ WW $\rightarrow$ $l \nu$ $l \nu$

- Dominant Higgs discovery mode for 130  $\lesssim m_H \lesssim$  190 GeV
- Dominant background from  $t\overline{t}$  and electroweak WW production
- Main experimental challenges :
  - forward jet reconstruction
  - pile up and central jet veto
- Main theoretical challenge for the backgrounds :
  - correct description of tagging jets
  - correct description for 3rd jet

Most important jet cuts :

- $p_T(j_1) >$  40 GeV
- $p_T(j_2) >$  20 GeV
- $\Delta\eta(jj) > 3.8$
- $\bullet \ M(jj) > {\rm 550~GeV}$
- jet veto :  $p_T > 20~{\rm GeV}$   $|\eta_3| < 3.2$



### **WBF H** $\rightarrow$ **WW : Importance of jet veto**

- 1. After lepton and tag
- 2. Lepton angular and mass cuts
- Momentum balance gold of the second se
- 4. Drell Yan (Z) rejection





# WBF H $\rightarrow$ WW : $t\bar{t}$ background

- Different situation than for Zjj : two b-jets from top-decay
- The combination of tag jet selection and central jet veto leads to a very specific topology:
  - one b-jet and one non b-jet are selected as tag jets
  - central jet veto either from second b-jet or radiation jet
- Detailed study started by B. Mellado, M. Duehrssen, J. Huston, S. Mrenna, ...
- Use of different MC Generators : Sherpa, Madgraph + Pythia
   + MLM by S. Mrenna, MC@NLO, ...

### **WBF H** $\rightarrow$ **WW** : background normalization

- Cuts reduce tt background by more than a factor 10.000
- Only trust the Monte Carlo? Normalization from data needed!
- Normalize bg. to region in  $M_T$  with small signal contribution



#### Higgs at Tevatron and LHC (besides who is first)

- So far concentrated on topics where Tevatron can help to understand LHC Higgs backgrounds
- Suppose the Higgs is really light, Tevatron might see first indications for  $H \rightarrow bb$  while LHC is seeing something in  $H \rightarrow \tau \tau, \gamma \gamma$ , WW or ZZ
- But combining information on H → bb from Tevatron with whatever LHC sees might give very valuable information for understanding Higgs physics

#### **Summary and Outlook**

- I am sure I have forgotten to mention many studies...
- In the beginning of the LHC the focus of Higgs physics will be on understanding Standard Model backgrounds
- Todays measurements at the Tevatron give very valuable information on how accurate current predictions are
- Key issue is to understand W/Z, WW, tt backgrounds + jets
  - How often and in which topology are tag jets selected?
  - How effective is the central jet veto?
- And of course, LHC can learn a lot for lepton ID, jets, missing E<sub>T</sub>, b-tag, τ-tag, ...

Many thanks to J. Huston, K. Jakobs, B. Mellado, S. Mrenna and A. Nikitenko Michael Dührssen, From Tevatron to Higgs Physics at the LHC - p.26