Diboson Cross Sections: A Few Notes

Andrew Askew Florida State University

- The basic analyses (all approx 200pb⁻¹):
 - > $W\gamma/Z\gamma$ (CDF and D0)
 - > WW/WZ->lvjj (CDF preliminary)
 - WW->llvv (CDF and D0)
 - ► WZ->lllv (D0)
 - ► WZ/ZZ->llll, lllv, llvv (CDF)
- Some rather non-technical observations (we can of course get technical if you want).

Analyses with photons:

- > Backgrounds are dominated by j-> γ , for W γ and Z γ .
- CDF and D0 went different ways:
 - CDF: Cut hard, has lower fake rate, quotes higher uncertainty.
 - D0: Cut loose, has higher fake rate, quotes lower uncertainty.
- Get to the same place though:
 - Final systematic errors ended up fairly comparable.
 - With the larger stats, the challenge will be to bring these to heel.

Worth Mentioning: Ζγ

- Radiative Zγ production:
 - Backgrounds are low, for BOTH CDF and D0.
 - > An opportunity to get real photon efficiencies from data? Cross section may be large enough at LHC to use $M_{ll\gamma}$ to do this.
 - Not enough statistics at Tevatron :(

WW/WZ-> Lepton Channels:

- Both CDF and D0 have published analyses on the WW cross section (and done clean searches in WZ, and WZ/ZZ).
 - Again experiments take different tacks, but...
 - In general, with two or more reconstructed leptons, your backgrounds become more physics and less mis-id (DY, Wγ, ZZ, etc.).
 - Need to know more about detector's resolution to separate.
 - Doing one lepton + stiff track tends to bring you back to having lots of mis-id background.

Larger acceptance though... Andrew Askew

- Much larger branching fraction than lepton only.
- Extremely small signal on VERY large continuum background (W+jj).
 - Like the most difficult parts of top and EW combined.

- You can divide these analyses into:
 - Mis-ID backgrounds
 - Photons get hit twice: first by systematics dealing with the efficiencies, and then by the j->g rate in data.
 - Physics backgrounds
 - > Theoretical predictions, with data resolutions and efficiencies.
- Taking statistics out of the equation 'pulls the curtain back' on these issues.

Here there be dragons....

Wγ Anomalous Couplings

- Photon E_T agrees w/ S.M.
 (last is overflow bin).
 - Form a binned-likelihood based on E_T^{γ} in a λ_{γ} vs. $\Delta \kappa_{\gamma}$ grid (including bkgd) on events w/ MT3>90 GeV/c².

WZ DØ Zy Cross Section

WZ DØ WW Cross Section

CDF WZ/ZZ Limit WZ

WZ DØ WZ Analysis

σ(p**p**->WZ)<13.3 pb

or, interpreted as cross section: $\sigma(p\bar{p}-WZ)=4.5^{+3.8}$ pb

DØ Preliminary

SM: 3.7 ± 0.1 pb

Probability of background to fluctuate up to 3 events: 3.5% 18

- Inner contours: 2D limits. Outer contours are from unitarity.
- Best limits in WZ final states.
- First 2D limits in $\Delta \kappa_z$ vs. λ_z using WZ.
- Best limits available on Δg_1^{Z} , $\Delta \kappa_z$, and λ_z from direct, modelindependent measurements.
- The DØ Run II 1D limits are ~ factor of 3 better Run I limits.

