Search for SM Higgs in WW* channel at CDF

Mircea Coca Duke University

On behalf of the CDF Collaboration

TEV4LHC Workshop Fermilab October 20-22, 2005

Mircea Coca, Tev4LHC, October 20-22, 2005

Overview

- SM Higgs Production and Decay
 Sensitivity to Non-SM Physics

 4th Generation Fermion Families

 Di-boson Cross-Section Measurement at CDF
 Signal and Background for H→WW
 95% CL. on σxBR(H→WW*)
 - Prospects for 1/fb
 - Looking forward

"Panning for Higgs"

Standard Model (SM) Higgs Production ...

Mircea Coca, Tev4LHC, October 20-22, 2005

... And Higgs Decay

Non-SM Production: 4th Generation Models

Higgs WW final states

Final state •2 leptons W+55 ,225 missing energy (neutrinos)

Signal and Backgrounds

G Signal:

- Use PYTHIA + GEANT detector simulation
- 10 Higgs mass points between 110-200 GeV (in 10 GeV steps)

$M_H({ m GeV}/c^2)$	110	120	130	140	150	160	170	180	190	200
$\sigma imes BR(H o WW)$ (pb)	0.04	0.09	0.15	0.21	0.24	0.26	0.23	0.18	0.13	0.10
$H o WW(\ell u \ell u)$ events in 360 pb $^{-1}$	0.7	1.6	2.8	3.8	4.3	4.6	4.1	3.3	2.3	1.8

Backgrounds:

- Vector boson pair production
 - WW, WZ, ZZ (estimated from PYTHIA)
 - WW about 70% of the total background (m_H=160GeV)
- Vector boson production
 - □ Drell-Yan: $Z/\gamma^* \rightarrow ee/\mu\mu/\tau\tau$ (estimated from PYTHIA)
 - W+jets(jet \rightarrow e/µ) (estimated completely from data)
 - $W + \gamma (\gamma \rightarrow e)$ (estimated from MC)
- Smaller backgrounds
 - tt, multijets

Luminosity:

- We analyzed 360pb⁻¹ of Run II data.
 - (weighted value-different subsystem requirements).

Mircea Coca, Tev4LHC, October 20-22, 2005

Relative backgrounds

 $M_{H} = 160 GeV$

$$\sigma(p\bar{p} \to WW) = 14.6^{+5.8}_{-5.1}(stat)^{+1.8}_{-3.0}(syst) \pm 0.9(lum)pb$$

[PRL 94, 211801 (2005)] (CDF) $\sigma_{WW}(NLO) = 12.4 \pm 0.8 \text{pb}$

S/B = 2

WW

Bkg

Data

 0.08 ± 0.02

 10.20 ± 1.19

 $5.0^{+2.2}$

17

-0.8

W

Handles to separate WW from HWW

- It is the main challenge of this analysis
- Exploit spin correlations
 - Higgs is a spin 0 particle
 - V-A structure in W decay
 - Leptons tend to be parallel
 - Small Δφ(ℓ, ℓ)
 - Neutrinos go parallel
 - Typically larger missing energy than WW
 - Small di-lepton invariant mass
- It is important to have Higgs mass-dependent selection requirements
 - Heavier the Higgs, better the separation of the signal from WW

 $\Delta \phi(\ell, \ell)$ after event selection

Signal Acceptance

Cut (M _H =160GeV)	Efficiency (%)
2 well-identified leptons	9.14 ± 0.04
$M_{\parallel} > 16 \text{ GeV}$	96.1 ± 0.06
jet veto	88.2 ± 0.11
$MET > M_H/4$	80.5 ± 0.14
MET>50GeV $\Delta \Phi_{met,l/j}$ >20°	96.4 ± 0.07
opposite signs	98.7 ± 0.04
$M_{\parallel} < M_{H}/2 - 5 \text{ GeV}$	98.9 ± 0.04
$p_t^{lep1}+p_t^{lep2}+met < M_H$	97.2 ± 0.07

•Acceptance loss due to:

- detector coverage
- lepton identification

Control Regions

We did not performed a blind analysis this time

Looked in some control regions/cross checks

- Measured Z→ee, µµ crosssections → used data with 2 leptons
- Compare the number of samesign charge events with SM predictions
- Compare the SM expectations with data events with
 - $25 < missing energy < M_H/4$
 - Signal selection requires missing energy>M_H/4

We found good agreement between SM and data

Same-sign events, 2 leptons, jet veto

SM Expectation and Data

$M_H({ m GeV}/c^2)$	120	140	160	180	200		
e^+e^-							
Back	4.7 ± 0.5	4.2 ± 0.5	4.4 ± 0.5	4.1 ± 0.5	4.1 ± 0.4		
Signal	0.03 ± 0.002	0.08 ± 0.007	0.14 ± 0.012	0.10 ± 0.008	0.05 ± 0.004		
Data	2	4	5	5	5		
$e^{\pm}\mu^{\mp}$							
Back	5.2 ± 0.5	6.2 ± 0.6	6.5 ± 0.7	6.3 ± 0.6	5.7 ± 0.6		
Signal	0.05 ± 0.004	0.17 ± 0.01	$\textbf{0.3}\pm\textbf{0.03}$	0.21 ± 0.02	0.11 ± 0.01		
Data	1	4	5	6	6		
$\mu^+\mu^-$							
Back	2.1 ± 0.3	2.7 ± 0.3	2.9 ± 0.3	3.0 ± 0.3	3.0 ± 0.3		
Signal	0.022 ± 0.002	0.078 ± 0.007	0.141 ± 0.012	0.098 ± 0.008	0.051 ± 0.004		
Data	1	4	5	6	6		

Data does not show any excess.

Azimuthal angle between di-leptons

4.5 4

3.5⊨

3

2.5

2

Events / ∆Φ=0.3927

CDF Run II Preliminary, L_{int} = 360 pb⁻¹

- Take advantage of the difference in the $H \rightarrow WW$ and $WW \Delta \phi(I,I)$ distributions
 - Use a binned likelihood in Δφ, which we maximize as a function of σxBR(H→WW) to set 95% C.L. limits

DY/Z→ll

W+jet/γ

WZ+ZZ+tt HWW130

10 x HWW

ww

- data

95% CL on $\sigma x BR(H \rightarrow WW)$

Few kinematic distributions

$H \rightarrow WW$ contribution to the Tevatron Higgs search

Tune on Tom Junk's talk for more.

Two main areas to focus on:

Reducing WW background

- Find better discriminating variables
- Exploit any correlations between them
 - Advanced techniques:
 - ANN, likelihood, SVM, etc

Increase the signal acceptance

- Loosen the lepton identification criteria
- **\square** Loosen the trigger lepton P_T
 - Help mainly at lower Higgs masses
 - Involve using a different trigger
- Include the lepton+hadronic tau channel
- Include acceptance from associated VH and VV fusion

Exploit known/find new discriminating variables

H→WW→IvIv: L=360 pb ⁻¹ , M _H =160 GeV					
S	0.58				
В	13.78	WW: 9.8			
		W+γ/W+j:2.5			
S/√B	0.12				

Neural Networks (Work in progress)

- Considered variables showing separation between WW and HWW:
 - Exploit Higgs' spin 0
 - Production of a heavy particle, m_H
 - Exploit different production mechanisms
 - □ qq→WW vs gg→H
- Optimize on S/sqrt(B) for easy comparison with the current analysis (M_H=160GeV)
- Find 9 discriminating variables
 - 1.42x better S/sqrt(B)

Mircea Coca, Tev4LHC, October 20-22, 2005

1/fb projections summary

- Assume the current analysis as starting point
- Below are just few ways we think we can use to improve our sensitivity

2*
5
5
C

Equivalent to ~4x more luminosity

- There is still potential to do better
- Not all these improvements might be ready for Winter conferences

- □ CDF performed a benchmark search for H→WW* in leptonic decays
- We are a factor of 12 away from the SM predictions (M_H~160 GeV)
- Soon to become sensitive to extra fermion families
- Further optimizations are being worked on
- A lot more to learn about this channel in the next few years
 - Could play a bigger role at the low Higgs masses than previously thought ?

See Tom Junk's plenary talk for a CDF big picture