

Single-Top at CDF Catalin Ciobanu, Wolfgang Wagner for the CDF Single-top Group

TeV4LHC meeting October 20, 2005

• Phys.Rev.D71:012005,2005

- Look in the **W+2 jets** channel:
 - > 1 lepton with $E_T > 20$ GeV, $|\eta| < 1.0$
 - missing transverse energy: MET>20 GeV
 - 2 jets : E_T> 15 GeV, |η| < 2.8</p>
 - at least one b-tag (displaced sec. vertex)
 - Veto Z, dilepton, conversion events
- Topological cuts:
 - 140 < M_{Ivb} <210 GeV/c² (combined and separate searches)
 - leading jet E_T > 30 GeV (separate search for t-channel only)
- Backgrounds: non-top and tt

- Two distinct analyses: combined and separate searches
- Combined Search:
 - Signal: s-channel and t-channel single-top events
 - > Both cross-sections proportional to $|V_{tb}|^2$
 - Exploits distributions similar for s- and t-channels:
 - > H_T = the total transverse energy in the event ($E_T^{lep} + MET + \Sigma E_T^{jet}$)

Separate Search:

- 1. Signal = t-channel (s-channel is a background)
 - > FCNC couplings, anomalous V+A contributions to the W-t-b vertex, etc.
 - > Q• η variable (Q = lepton charge, η = pseudorapidity of non b-tagged jet)
 - > Q• η asymmetric in t-channel events: N(Q• η >0) = 2* N(Q• η <0)
- 2. Signal = s-channel (t-channel is a background)
 - Heavy charged vector bosons W', CP-violation effects within MSSM, Kaluza-Klein excited W-boson within MSSM
 - Double b-tags simple counting

• Two-variable analysis: cut on reconstructed top mass $M_{\rm lvb}$ then fit the total transverse energy $H_{\rm T}$

Combined Search Results

MPV(β units)	MPV(pb)
2.7 +1.8	7.7 ^{+5.1}
-1.7	-4.9

A-priori, no syst: 12.4 pb

A-priori, w/ syst: 13.6 pb

A-posteriori w/ syst: 17.8 pb

Process	Number of events		
	1-b-tag-bin	2-b-tag-bin	
tī	3.2 ± 0.7	0.60 ± 0.14	
Non-top	23.3 ± 4.6	2.59 ± 0.71	
Sum Background	26.5 ± 4.7	3.19 ± 0.72	
t-channel	2.7 ± 0.4	0.02 ± 0.01	
s-channel	1.1 ± 0.2	0.32 ± 0.05	
Sum Single-Top	3.8 ± 0.5	0.34 ± 0.05	
Sum Expected	30.3 ± 4.7	3.53 ± 0.72	
Observed	33	6	

t-channel: A-priori: 11.2 pb A-posteriori: 10.1 pb s-channel: A-priori: 12.1 pb A-posteriori: 13.6 pb

Channel	MPV(β units)	MPV(pb)	
t-channel	0.0 +2.4 -0.0	0.0 +4.7 -0.0	
s-channel	5.2 +4.3 -4.3	4.6 +3.8 -3.8	

- Dec 04 CDF Workshop
 - Make sure we model signal correctly
 - Z. Sullivan, T. Stelzer, E. Boos, S. Slabospitsky
 - Plan for the next iteration
 - Increase acceptance
 - ➢ Increase S/B
 - Mulivariate techniques
- Next publication aim for observation:
 - Previously: set limits on anomalously high signal rates
 - Null hypothesis: background+SM single-top
 - Test hypothesis: background+very large signal rates
 - > Currently:
 - > Null hypothesis: backgrounds only, no signal
 - Test hypothesis: background + SM signal

NN b-tagging

t-channel	5%
s-channel	3%
$t\overline{t}$	11%
$Wb\overline{b}$	32%
$Wc\overline{c}$	12%
Wc	12%
Mistags (<i>u,d,s</i>)	25%

• Kinematic fitter: allow p_b , η_b , ϕ_b and E_T^{ν} , ϕ^{ν} to vary within uncertainties

$$\chi_m^2 = \frac{(\eta_b^{fit} - \eta_b^{meas})^2}{\sigma_{\eta_b}^2} + \frac{(\phi_b^{fit} - \phi_b^{meas})^2}{\sigma_{\phi_b}^2} + \frac{(p_b^{fit} - p_b^{meas})^2}{\sigma_{p_b}^2} + \frac{(p_{tv}^{fit} - E_t^{meas})^2}{\sigma_{E_t}^2} + \frac{(m_t^{fit} - m_t^{meas})^2}{(0.5GeV)^2}$$

- 4 fits: 2 b-jet assignment + 2 p_z solutions
- Can use this χ^2 for choosing the b from top (~80% correct)
- Calculate matrix element-like quantities
- Then, form a combined probability
 - Different variables for t-channel and s-channel

$$p_i^{j}(x_i) = \frac{f_i^{j}(x_i)}{\sum_{k=1}^{3} f_i^{k}(x_i)} \qquad \qquad L^{j}(\vec{x}) = \frac{\prod_{i=1}^{n_{\text{var}}} p_i^{j}(x_i)}{\sum_{k=1}^{3} \prod_{i=1}^{n_{\text{var}}} p_i^{k}(x_i)}$$

- 6 Variables: M_{Ivb} , ME(t-chan), cos($\theta^{I,jet}$), M_{jj} , H_T , Q* η
- Using the 4.11 samples, need 1.7 fb⁻¹ for a 3σ evidence on the t-channel. For s-channel, need good variables...

 3-layer Neural Network NeuroBayes[@] program (Bug Leiggle tep BDD: IETNET) 		Rank	Variable	Relev. σ
		1	$M_{\ell\nu b}$	45.0
		2	M_{jj}	30.8
(Run I single-top PRD: JETNET)		3	$Q\cdot\eta$	18.5
 15 variables input to 3-layer net 		4	ANN b-tag	17.6
Best 10 variables:		5	$\cos heta_W$	16.4
t-channel s-channel $t\bar{t}$	$Wbar{b}$ $Wcar{c}$ Wc	6	H_T	9.8
NN output top processes	NN output W + jets	7	$ heta_{\ell b}$	5.9
	0.07 [[]	8	$\Delta\eta(j_1,j_2)$	4.9
	0.06	9	η_W	4.0
	0.05	10	$\log_{10}(\Delta_{23})$	3.7
0.014 0.012 0.014 0.008 0.006 0.004 0.		0.2 0.4 N		C. Ciobanu, page 12

- Use of ANN for single top search seems very promising. Improvement of +32% in S/√B.
 3 σ significance with 1.5 fb⁻¹.
- Use more variables, e.g. polarization, and improve variables, e.g. use $M_{\ell\nu b}$ from kinematic fit.
- Implement two-step approach: (1) cut on combined ANN to reduce background, (2) separate into t- and s-channel with additional networks.

Matrix Element Method

- s-channel and t-channel probabilities:
 - 2(in) + 12(final) = 14 degrees of freedom
 - $3(e) + 4(jet angles) + 3(P_{in}=P_{fin}) + 1(E_{in}=E_{fin}) = 11 constraints$
 - 14 11 = 3 integrals => Integrate over neutrino p_z and jet energy of both jets
 - Change variables p_z →m_W because IMI² is almost negligible, except near the Breit-Wigner poles
 - Both neutrino solutions are considered at each integration step and sum over 2 combinations of jets

$$P(x,\alpha) = \frac{1}{\sigma} \int d\rho_b d\rho_{\overline{b}} dm_W^2 \sum_{comb,\nu} |M(\alpha)|^2 \frac{f(q_1)f(q_2)}{|q_1||q_2|} \phi_4 W_{jet}(x,y)$$

banu, page 14

- Main reference: Bernd Stelzer's thesis:
 - Moved to UCLA but still CDF.
- Matrix element from MadEvent
- Transfer functions double Gaussian parametrization
- EPD = P_s/P_b
- Making several assumptions 1.2 fb⁻¹ for 3 σ

Conclusions

- LHC4TeV MC help from Sergey Slabospitsky (CMS)
- In progress:
 - Increase acceptance (forward electrons)
 - Increase signal purity (NN b-tagger)
 - Use multivariate techniques:
 - Matrix element, Neural-Nets, Likelihood
- We should be ready for >1 fb⁻¹ switch to discovery mode.
- No discovery without reducing the background uncertainties