

CDF's SM and MSSM Higgs Search Sensitivity

Tom Junk

University of Illinois at Urbana-Champaign

SM Higgs Searches

$$W^{\pm}H \rightarrow \ell^{\pm}\nu b \overline{b}$$
 $ZH \rightarrow \nu \overline{\nu} b \overline{b}$
 $ZH \rightarrow \ell^{+}\ell^{-}b \overline{b}$
 $gg \rightarrow H \rightarrow W^{+}W^{-}$
 $W^{\pm}H \rightarrow W^{\pm}W^{+}W^{-}$

MSSM Higgs Search

$$H \rightarrow \tau^+ \tau^-$$

Sensitivity of Combined Channels
Projections for the Future

SM Higgs Sensitivity Projections (2003)

Run II Detectors
Realistic MC
Some data for
calibrating bg
No Systematic
Errors!

2003 Predictions:

- 1.5 2.5 fb⁻¹/Exp. to exclude m_H =115 GeV (if it's not there!)
- 3 5 fb⁻¹/Exp. to get 3σ Evidence in a median experiment if m_H =115 GeV

SECVTX B-tag efficiency

- s/b tradeoff: Leptons & Missing E_T are distinctive; real backgrounds have two b quarks. Single-tag is enough. Future: Combine single and double-tag analyses, do a tight-loose tag, or better yet, use a continuous tagging variable.
- Jet-probability tags are available but not yet used in Higgs analyses
 -- more complication for estimating mistags

Mistag rates typically ~0.5% for displaced vertex tags

WH-Ivbb

here.

Select events with

- Identified electron or muon $E_T > 20$ GeV, isolated
- Missing $E_T > 20 \text{ GeV}$
- Two jets with $|\eta| < 2.0$, $E_T > 15 \text{ GeV}$.
- Veto extra jets, Z⁰, cosmics, conversions, extra isolated tracks
- At least one b-tag

WH-Ivbb Signal Acceptance

Source of Uncertainty	Syst (%)
Lepton ID	5
Trigger	<0.1
PDF	1
ISR	3
FSR	7
Jet Energy Scale	3
B-tag	5
Jet Energy Resolution	1
Soft Jet Modeling	1
Total	11

WH \rightarrow lvbb Channel: $m_{i,i}$ Distribution and Limits

Background = 174.7 ± 26.3 Data = 187 Events

The Search for $ZH o u ar{ u} b \overline{b}$

 This signature proved to be the very sensitive in Run I

Event Selection:

- At Least 2 jets
 - 1st Jet E_T > 40 GeV
 - 2^{nd} Jet E_T > 20 GeV
- ₱_T > 70 GeV
- At Least 1 b-tag

- Signal has a distinctive topology
 - Large missing transverse energy
 - two jets (one is b-tagged)

ZH-vvbb Channel: Selection and Control Samples

Veto events with isolated leptons (W+jets bg).

Veto Cosmics, Z⁰ Candidates

Select events where missing- E_T points away from jets. (rejects QCD dijets)

Choosing ZH-vvbb Mass Windows

- Last cut is on the dijet invariant mass
- A window of +20 GeV and -20 GeV is set around each of the mean of the mass peaks

Invariant M	lass (GeV)	s/\sqrt{b}
min.	max.	
60	140	0.043
70	130	0.047
80	120	0.060
90	110	0.056

The ZH-vvbb Signal Region

(Still has low s/b)

Last cut: mbb mass window

cut: ±20 GeV around

test-mass m_H

ZH-vvbb Systematic Uncertainties

Source	Signal Rel err (%)	Background Rel err (%)
Luminosity	6	6
B-tag eff	6	2
Trigger eff	3	2
Lepton Veto	2	2
Jet Energy	8	4
Uncorrel signal	2	0
Uncorrel bg	0	22

Totals: 12% for signal, 23% for background 11

Setting Limits: ZH->vvbb

Mass (GeV)	Observed events	SM prediction	Higgs signal acceptance	Expected Limit (pb)	Observed Limit (pb)
90	6	7.18	0.45%	6.3 ± 1.2	5.4
100	7	7.07	0.55%	5.1 ± 1.0	5.0
110	7	5.9	0.64%	4.6 ± 1.4	5.2
115	7	5.9	0.67%	4.3 ± 1.4	4.8
120	6	4.36	0.73%	3.6 ± 1.4	4.5
130	8	4.11	0.77%	3.2 ± 1.0	5.2

Mass window cuts applied, but just a counting experiment

12

The $gg \rightarrow H \rightarrow W^+W^-$ Channel

Signal Process:

Dominant background:

$$q \overline{q} \rightarrow W^+ W^-$$

- Interesting Angular
 Correlation due to
 Scalar nature of Higgs Boson
- Different from SM W⁺W⁻ bg decay angular correlation!

Newly Updated $gg \rightarrow H \rightarrow W^+W^-$ Search

- Re-optimized selection requirements
- 360 pb⁻¹ of data now used
- Two opposite-sign, isolated leptons, with $E_T>20$ (10) GeV
 - Conversion, cosmic vetoes
- Missing $E_T > M_H/4$
- Missing $E_T > 60 \text{ GeV}$ or $\Delta\Phi_{\text{MET,lep/jet}} > 20^{\circ}$
- $16 \text{ GeV} < m_{\text{H}} < M_{\text{H}} / 2 5 \text{ GeV}$
- $p_{lept1} + p_{lept2} + Missing E_T < M_H$
- Sophisticated jet requirements
 - No jets OR
 - $15 < E_T < 55 \text{ GeV}$ with one jet ($|\eta| < 2.5$) OR
 - $15 < E_T < 40 \text{ GeV}$ with two jets ($|\eta| < 2.5$)

Acceptance is ~0.4% [including $Br^2(W\rightarrow lv)$] for $m_H>160 \text{ GeV}$

This search has explicit test-mass dependence. The background depends on the signal hypothesis

Backgrounds in the $gg \rightarrow H \rightarrow W^+W^-$ Channel

- Mostly WW
- · Lepton Fake Rates are calibrated with jet data

$$m_H = 160 \text{ GeV}, \int \mathcal{L}dt = 360 \text{ pb}^{-1}$$

Category	Events
WW	9.79 ± 1.03
Drell-Yan+WZ+Wγ+ZZ+top	2.65 ± 0.22
Misid'd Leptons	1.33 ± 0.67
Total BG	13.78 ± 1.24
Observed	16
$H \rightarrow W^+W^-$	0.58 ± 0.04

$gg \rightarrow H \rightarrow W^+W^-$ Acceptance

	Systematic Error (%)
ISR	3
α_s	3.3
PDF Acceptance	3
Jet Energy Scale	1
Lepton ID	2
Track Isolation	2
Trigger Efficiency	1
Combined	6

!BR(W→Iv)² not included

Extracting Limits with the $\Delta\Phi$ Distribution

Collected CDF+DØ SM Higgs Limits

Tevatron Run II Preliminary

- · Cluttered: Let's combine!
- · Doesn't show expected limits: can be more important!
- Problem including WH signal in ZH search channel what's the "SM prediction?" -- new plot: fractional rate limit

Another Representation - Ratios of Limits to SM

Getting Started with ZH→l+l-bb

- Selection:
 - $Z^0 \rightarrow e^+e^- \text{ or } \mu^+\mu^-$
 - 2 or 3 jets, at least one b-tag
 - Low Missing E_T

Most of Background: Z⁰bb (Zcc and Zc and Z+LF also there)

Background: 3 events/100 pb⁻¹ Signal: 0.03 events/100 pb⁻¹

Additional Discrimination Power in the ZH→l+l-bb Channel

Encouraging feature: Predicted Zbb and Z+2p shapes are similar

Sensitivity with Existing CDF Analyses

New 360 pb⁻¹ h \rightarrow WW analysis used

lvbb vvbb llbb WW WWW As They Are

Cross-Section times branching fraction limit as a multiple of the SM rate

Luminosity Thresholds for CDF's Channels Combined

Assumption: Systematic errors

scale with $1/\sqrt{\int \mathcal{L}dt}$

All channel's luminosities scaled to 300 pb⁻¹ and then scaled together

Width of bands given by systematic errors on/off

Would need 50 fb⁻¹ to exclude m_H =115 GeV if:

- 1) DØ stops taking data
- 2) CDF never does any work on the channels

Lumi Thresholds -- lvbb,vvbb,llbb,WW,WWW As They Are

We hope to do much better!

So How Do We Get There??

Luminosity Equivalent $(s/\sqrt{b})^2$

Start with existing channels, add in ideas with latest knowledge of how well they work.

Improvement	WH→lvbb	ZH→ννbb	ZH→llbb
Mass resolution	1.7	1.7	1.7
Continuous b-tag (NN)	1.5	1.5	1.5
Forward b-tag	1.1	1.1	1.1
Forward leptons	1.3	1.0	1.6
Track-only leptons	1.4	1.0	1.6
NN Selection	1.75	1.75	1.0
WH signal in ZH	1.0	2.7	1.0
Product of above	8.9	13.3	7.2
CDF+DØ combination	2.0	2.0	2.0
All combined	17.8	26.6	14.4

Expect a factor of ~10 luminosity improvement per channel, and a factor of 2 from CDF+DØ Combination ²⁴

Dijet Mass Resolution Improvements

Effect of Forward Jets on Dijet Mass Resolution

NN Extension of SECVTX B-tag

non-top backgrounds (single-top) Neural Network after SecVtx ¼ 50% Signal:

Approach:

- require SecVtx
- improve purity by including:
 - long lifetime (also by SecVtx)
 - decay length of SecVtx
 - D₀ of tracks
 - large mass
 - mass at SecVtx
 - p_⊤ of tracks w.r.t jet axis
 - decay multiplicity
 - # of tracks
 - decay probability into leptons
 - # of leptons

single-top, $t \bar{t}$, $W b \bar{b}$ Background:

 $Wcar{c}$, Wc , Mistags

(mixed acc. to background estimation)

Forward Electrons

Currently plug electrons only used as a Z⁰ veto in the lvbb channel.

Phoenix electrons give 25% extra signal 40% extra background

$$s/\sqrt{b} \rightarrow 1.06s/\sqrt{b}$$

$$(s/b)_{\text{forw}} = 0.6(s/b)_{\text{central}}$$

Not optimal to add -- treat as separate channel!

Expected Signal Significance CDF+DØ vs Luminosity

m_H=115 GeV assumed

The $h^0, A^0 \rightarrow \tau^+\tau^-$ Channel: Selection

- Isolated e or μ , $E_T > 10 GeV$
- · Hadronic tau:
 - 1 or 3 tracks. $\Sigma q = \pm 1$
 - · p_{T.had}>15 GeV
 - m_{had} <1.8 GeV (incl. π^{0} 's)
 - isolated (0.52 rad= θ_{iso})
 - · charge opposite to leptonic tau
- Z⁰ veto
- $H_T > \mathbb{E} \square \emptyset \mathbb{M}$ (sum of tau candidate E_T plus Missing E_T)

• ζ cut

The $h^0, A^0 \rightarrow \tau^+\tau^-$ Channel: Backgrounds

- $Z/\gamma^* \rightarrow \tau^+\tau^-$: irreducible
- W \rightarrow lv + jet \rightarrow fake τ : estimated with data
- dijets \rightarrow fake lepton + fake τ_h : estimated with data
- Other backgrounds: $Z\rightarrow II$, tt, diboson,... Use MC.

Fake rate: $P(\text{fake }\tau_h|\text{jet}) = 1.5\%$ at $E_T=20$ GeV, drops to 0.1% at $E_T=100$ GeV

Source	Events in 310 pb ⁻¹
$Z/\gamma^* o au^+ au^-$	405 ± 24
Fake $\tau_h + X$	75 ±15
All other bg	16 ± 1
Total	496 ± 38
Observed	487

The $h^0, A^0 \rightarrow \tau^+\tau^-$ Channel: Signal Acceptance

Systematic Uncertainties on Signal Estimation

Error Source	Error (%)	applies to
e ID	1.3	e
μ ID (CMUP)	4.4	μ
μ ID (CMX)	4.6	μ
τID	3.5	$\tau_{ m h}$
Event Cuts	1.8	all
PDF	5.7	all signal
e trig	1.9	e
μ trig (CMU)	1	μ
μ trig (CMX)	1	μ
track τ trig	1	$ au_{ m h}$
Luminosity	6	all

An Approximate Mass Reconstruction: m_{vis}

Invariant mass of visible $\tau^+\tau^-$ decay products plus Missing E_T

Limits on Cross-Section × Branching Ratio

 $\phi = h^0$, A^0 or H^0 or a sum of states with similar masses ₃₄

Tau Channel Prospects for the Future

Summary and Outlook

• We have preliminary searches in a great variety of channels, most with $\sim 300~\rm pb^{-1}$ of data analyzed for Summer 2005.

SM Higgs Searches $W^{\pm}H \rightarrow \ell^{\pm}\nu b \bar{b} \quad ZH \rightarrow \nu \bar{\nu} b \bar{b}$ $ZH \rightarrow \ell^{+}\ell^{-}b \bar{b} \quad gg \rightarrow H \rightarrow W^{+}W^{-}$ $W^{\pm}H \rightarrow W^{\pm}W^{+}W^{-}$

MSSM Higgs Search

$$H \rightarrow \tau^+ \tau^-$$

- We have tools to combine them together and estimate sensitivity
- The sensitivity is currently insufficient to test for presence or absence of a SM Higgs boson but we will get more data and improve our channels with wellunderstood techniques.
- MSSM Higgs searches are getting exciting.

Backup Slides Follow

Another Interesting Candidate Event

Jet₁
$$E_T$$
=84.7 GeV
Jet₂ E_T =71.9 GeV -- Tagged

$$m_{jj}$$
 = 129 GeV
Missing E_T = 98 GeV

An Interesting Candidate Event

Two b-tagged jets

Jet₁
$$E_T$$
= 100.3 GeV
Jet₂ E_T = 54.7 GeV

$$m_{jj}$$
= 82 GeV
 Missing E_T=145 GeV
 Could be ZZ

Search For
$$W^{\pm}H^{0} \rightarrow W^{\pm}W^{+}W^{-}$$

- Like-sign dilepton selection ("1"=more energetic lepton, "2"=less energetic)
 - $p_{T,1}>20 \text{ GeV}, p_{T,2}>6 \text{ GeV}$
 - reject conversions, cosmics, Z→leptons
 - Signal region: $p_{T,2}>16$ GeV, $p_{T,12}=|\vec{p}_{T,1}+\vec{p}_{T,2}|>35$ GeV for $m_H<160$ GeV. Harden $p_{T,2}$ cut to 18 GeV for $m_H>160$ GeV

Category	Events in 193.5 pb ⁻¹
Conversions	0.61 ± 0.61
Fake Leptons	0.12 ± 0.01
Other sources*	0.22 ± 0.10
Total background	0.95 ± 0.64
Observed	0

*Other backgrounds: Diboson, top, Wqq SM WH signal: 0.03 events (m_H=160⁴GeV)

$W^{\pm}H^{0} \rightarrow W^{\pm}W^{+}W^{-}$ Signal Acceptance and Limits

Acceptance includes W branching fractions

Acceptance Systematic Error: 11%

ISR, FSR, PDF, Lepton ID, MC Stat., Mass dependence 41

CDF sees Z→bb decays in Run 2

Double b-tagged events with no extra jets and a back-to-back topology are the signal-enriched sample: $E_t^3 < 10 \text{ GeV}$, $\Delta\Phi_{12} > 3$

Among 85,784 selected events CDF finds 3400±500 Z→bb decays

- signal size ok
- resolution as expected
- jet energy scale ok!

This is a proof that we are in business with small S/N jet resonances!

CDF expects to stringently constrain the b-jet energy scale with this dataset

Check - Recalculate All Channels' Sensitivities with CLs

(look for mistakes in preparation of results)

ZH to vvbb Expected Limit

H to WW Expected Limit

WH to WWW Expected Limit

Recomputing H to WW Expected limits

Green: Expected, old analysis. Red: Expected, new analysis

Black: SM

Same limits computed by channel experts

Impact Parameter Resolution Performance

Fig. 2. σ_{d_0} vs. p_T for all tracks intersecting sensors located at r = 1.6 cm. Distributions for tracks intersecting regions of SVXII with (without) extra material are shown in the graph on the left (right). Fit results are shown overlaid.

Status as of Nov. 2004

WH \rightarrow lvbb Cut Optimization: E_T Cuts on the two jets

Operating point

 $s=^{r}\bar{b}$ is maximized with the lowest possible jet E_{T} cuts we can tolerate!

Further analysis optimization underway!

SM Higgs Searches at the Tevatron: WH→Ivbb

ZH-vvbb Channel: Optimized Cuts

Benchmarked at M_h=120 GeV

Selection cut	ZH 120	Acceptance	S/sqrt(B)
	288.9 pb ⁻¹	(%)	
Basic Cuts	0.205±0.004	5.92 ±0.1	0.03
$\Delta \varphi(1^{st} Jet, \mathbb{E}_T) > 0.8$	0.205 ±0.004	5.92±0.1	0.03
H_T significance	0.183 ± 0.003	5.23±0.1	0.03
$1^{st} JetE_T > 60 GeV$	0.161±0.003	4.68±0.09	0.04
Di-jet mass cut	0.126±0.016	3.64±0.08	0.06

$$H_T$$
 significance = H_T/H_T

Background Contributions in Control Regions after Optimization Cuts

No mass window cut yet

Process

Observed

Control Region 2

47

Signal Region

19

QCD multi-jet 9.5 ± 4.3 5.2 ± 3 2.6 ± 1.7 TOP 0.01 ± 0.002 8.9 ± 2.3 2.1 ± 0.4 Di-boson 0 ± 1.2 1.5 ± 0.3 1.1 ± 0.2 W + h.f. 9.7 ± 3.5 3.7 ± 2.6 0 ± 1.2 Z + h.f. 3.2 ± 1.2 0 ± 0.18 1.1 ± 0.3 Mistag 2.9 ± 0.4 11.9 ± 2.3 7.0 ± 1.0 Total Expected BCK 12.4 ± 4.6 38.3 ± 5.7 19.7 ± 3.5

Control Region 1

16

 $L=289 \text{ pb}^{-1}$

ZH-vvbb Control Samples - Constrain Background Levels

Region #1: QCD-dominated Mistags from data, bb bg shape from MC, scaled to fit data rate.

After "optimized cuts"

Control Region #2 - Requiring a Lepton

Optimized Cuts Applied

SM Higgs Boson Production and Decay

Decay Branching Ratios

52

Non-W Backgrounds in WH→Ivbb

Estimated with - Missing E_T vs. R_{iso}

R_{iso}=[Energy inside cone of size 0.4 around lepton] / [Energy of lepton]

Non-W background is assumed to have uncorrelated R_{iso} and $\boldsymbol{\mathcal{E}}_{T}$

Non-W: $D = C^*(A/B)$ (after correcting for signal in the background samples)

WH—Ivbb Background Summary

Background Source	Rate (events in 319 pb ⁻¹)	How Estimated
Mistags	39.9 ± 3.1	Neg. Tags in jet data
Wbb	54.0 ± 18.4	Data & MC
Wcc	19.5 ± 6.6	Data & MC
Wc	16.8 ± 4.3	Data & MC
Diboson+Z→ττ	5.0 ± 1.1	MC
non-W	16.5 ± 3.2	\mathbb{Z}_{T} vs. isolation in data
tt	14.1 ± 2.5	MC
Single top	9.6 ± 2.0	MC
Total Background	174.7 ± 26.3	
Observed Data	187	

The Higgs Bosons of the MSSM

- Two Complex Higgs Doublets! Needed to avoid anomalies.
- Five Degrees of Freedom plus W+,-, Z⁰ longitudinal polarization states
- Five scalars predicted: h, H, A, H⁺, H⁻
- · CP-conserving models: h, H are CP-even, A is CP-odd
- Independent Parameters:
 - m_A
 - $tan\beta$ = ratio of VEV's
 - µ
 - M_{SUSY} (parameterizes squark, gaugino masses)
 - m_{qluino} (comes in via loops)
 - Trilinear couplings A (mostly through stop mixing)
- Map out Higgs sector phenomenology variations of all other parameters correspond to a point in this space
- · And a real prediction: m_h < » △ ™ Let's test it!

Couplings of MSSM Higgs Bosons Relative to SM

W and Z couplings to H, h are suppressed relative to SM (but the sum of squares of h^0 , H^0 couplings are the SM coupling). Yukawa couplings (scalar-fermion) can be enhanced

Higgs Boson Production Mechanisms

 $\begin{array}{c} \text{Amplitude} \propto 1/\text{tan}\beta \\ \text{suppressed!} \end{array}$

Amplitude ∞ tanβ enhanced!

And many other diagrams

At high tan β , $\sigma(h,A+X) \propto tan^2\beta$ (low tan β and SM case: cross-sections too small to test with current data.)

enhanced!

The $h^0, A^0 \rightarrow \tau^+\tau^-$ Channel

- · Capitalize on large production cross-section
- · Tau leptons are distinct from QCD background
- · bbbb channel is possible too we're working on it.
- Useful $\tau^+\tau^-$ decay modes one hadronically decaying τ

Mode	Fraction (%)	Comments
$ au_{ m e} au_{ m e}$	3	Large DY bg
$ au_{\mu} au_{\mu}$	3	Large DY bg
$ au_{ m e} au_{ m \mu}$	6	Small QCD bg
$\tau_{\rm e} \tau_{\rm h}$	23	Golden
$ au_{\mu} au_{ m h}$	23	Golden
$ au_{ m h} au_{ m h}$	41	Large QCD bg

Interpretations in MSSM Benchmarks

LEP Limits - m_{top} =174.3 GeV for historical reasons.

Hadronic Tau Candidates are Well Modeled

Before cuts on # tracks and opposite charge to other tau.

After n_{trk} and charge cuts.

Higgs Boson Production and Decay at High tanß

Interesting feature of many MSSM scenarios (but not all!):

```
[m_h, m_H] \approx m_A at high tan\beta (most benchmark scenarios..)
```

- At leading order, $\Gamma(A^0 \rightarrow bb)$ and $\Gamma(A^0 \rightarrow \tau^+\tau^-)$ are both proportional to $\tan^2\beta$.
- Decays to W, Z are not enhanced and so Br. falls with increasing $tan\beta$ (even at high m_A)
- Br($A^0 \rightarrow bb$) ~ 90% and Br($A^0 \rightarrow \tau^+\tau^-$) ~ 10% almost independent of tan β (some gg too).

B-Tagging: A Tool Shared by the Low-Mass Analyses

LOO single-sided silicon + 5-layer double-sided silicon+ 2-layer ISL

Impact parameter resolution for high- p_T tracks ~18 μ m

Mistag rates typically 0.5% for light-flavor jets Example candidate event in lybb search

Sensitivity with Existing CDF Analyses

old h→WW analysis used

lvbb vvbb llbb WW WWW As They Are

Cross-Section times branching fraction limit as a multiple of the SM rate

Luminosity Thresholds for CDF's Channels Combined

old h→WW analysis used

Assumption: Systematic errors

scale with $1/\sqrt{\int \mathcal{L}dt}$

All channel's luminosities scaled to 300 pb⁻¹ and then scaled together

Width of bands given by systematic errors on/off

Would need 50 fb⁻¹ to exclude m_H =115 GeV if:

- 1) DØ stops taking data
- 2) CDF never does any work on the channels

Lumi Thresholds -- lvbb,vvbb,llbb,WW,WWW As They Are

Unlikely!!