

CDF's SM and MSSM Higgs Search Sensitivity

Tom Junk

Ī

University of Illinois at Urbana-Champaign

SM Higgs Searches $W^{\pm}H \rightarrow \ell^{\pm}\nu b\bar{b}$ $ZH \rightarrow \nu \bar{\nu} b\bar{b}$ $ZH \rightarrow \ell^{+}\ell^{-}b\bar{b}$ $gg \rightarrow H \rightarrow W^{+}W^{-}$ $W^{\pm}H \rightarrow W^{\pm}W^{+}W^{-}$

MSSM Higgs Search $H \rightarrow \tau^+ \tau^-$

Sensitivity of Combined Channels Projections for the Future

21 Oct, 2005

1

SM Higgs Sensitivity Projections (2003)

Run II Detectors Realistic MC Some data for calibrating bg No Systematic Errors!

2003 Predictions:

- 1.5 2.5 fb⁻¹/Exp. to exclude m_H =115 GeV (if it's not there!)
- 3 5 fb⁻¹/Exp. to get 3σ Evidence in a median experiment if m_H =115 GeV

SECVTX B-tag efficiency

- s/b tradeoff: Leptons & Missing E_T are distinctive; real backgrounds have two b quarks. Single-tag is enough.
 Future: Combine single and double-tag analyses, do a tight-loose tag, or better yet, use a continuous tagging variable.
- Jet-probability tags are available but not yet used in Higgs analyses -- more complication for estimating mistags

Mistag rates typically ~0.5% for displaced vertex tags

WH→Ivbb

Select events with CDF Run II Preliminary (319 pb⁻¹) Events 400 - Data W[±]+llght flavors • Identified electron or muon 350 W[±]+heavy flavors $E_T > 20$ GeV, isolated 300 **Diboson and Z⁰** $\rightarrow \tau^{+}\tau^{-}$ non-W[±] 250 • Missing $E_T > 20 \text{ GeV}$ Тор 200 **Background Error** 150 • Two jets with $|\eta| < 2.0$, 100 $E_T > 15 \text{ GeV}.$ 50 • Veto extra jets, Z⁰, cosmics, 0.5 1.5 2.5 2 35 conversions, extra isolated Jet Multiplicity tracks 1-jet bin: Used to 3 & 4-jet bins normalize Wbb & W2p used to normalize • At least one b-tag ALPGEN predictions. t-tbar background HF fraction measured rate. here. 4 2-jet bin: signal region

WH→lvbb Signal Acceptance

Source of Uncertainty	Syst (%)
Lepton ID	5
Trigger	< 0.1
PDF	1
ISR	3
FSR	7
Jet Energy Scale	3
B-tag	5
Jet Energy Resolution	1
Soft Jet Modeling	1
Total	11

WH \rightarrow Ivbb Channel: m_{jj} Distribution and Limits

Background = 174.7 ± 26.3 Data = 187 Events

The Search for $ZH \rightarrow \nu \overline{\nu} b \overline{b}$

 This signature proved to be the very sensitive in Run I

Event Selection:

- At Least 2 jets
 - 1^{st} Jet $E_T > 40$ GeV
 - 2^{nd} Jet $E_T > 20$ GeV
- ∉_T > 70 GeV
- At Least 1 b-tag

- Signal has a distinctive topology
 - Large missing transverse energy
 - two jets (one is b-tagged)

$ZH \rightarrow vvbb$ Channel: Selection and Control Samples

Choosing ZH $\rightarrow vvbb$ Mass Windows

- Last cut is on the dijet invariant mass
- A window of +20 GeV and -20 GeV is set around each of the mean of the mass peaks

Invariant Mass (GeV)		s / \sqrt{b}
min.	max.	
60	140	0.043
70	130	0.047
80	120	0.060
90	110	0.056

The ZH \rightarrow vvbb Signal Region

$ZH \rightarrow vvbb$ Systematic Uncertainties

Source	Signal Rel err (%)	Background Rel err (%)
Luminosity	6	6
B-tag eff	6	2
Trigger eff	3	2
Lepton Veto	2	2
Jet Energy	8	4
Uncorrel signal	2	0
Uncorrel bg	0	22

Totals: 12% for signal, 23% for background ¹¹

Setting Limits: ZH \rightarrow vvbb

Mass (GeV)	Observed events	SM prediction	Higgs signal acceptance	Expected Limit (pb)	Observed Limit (pb)
90	6	7.18	0.45%	6.3 ± 1.2	5.4
100	7	7.07	0.55%	5.1 ± 1.0	5.0
110	7	5.9	0.64%	4.6 ± 1.4	5.2
115	7	5.9	0.67%	4.3 ± 1.4	4.8
120	6	4.36	0.73%	3.6 ± 1.4	4.5
130	8	4.11	0.77%	3.2 ± 1.0	5.2

Mass window cuts applied, but just a counting experiment

Expected Limits assume a Higgs boson is not present

The gg \rightarrow H \rightarrow W⁺W⁻ Channel

Signal Process:

Dominant background: $q\bar{q} \rightarrow W^+W^-$

- Interesting Angular Correlation due to Scalar nature of Higgs Boson
- Different from SM W⁺W⁻ bg decay angular correlation!

Newly Updated $gg \rightarrow H \rightarrow W^+W^-$ Search

- Re-optimized selection requirements
- 360 pb⁻¹ of data now used
- Two opposite-sign, isolated leptons, with $E_T > 20$ (10) GeV
 - Conversion, cosmic vetoes
- Missing $E_T > M_H/4$
- Missing $E_T > 60 \text{ GeV OR } \Delta \Phi_{\text{MET,lep/jet}} > 20^{\circ}$
- 16 GeV < m_{ll} < $M_H/2 5$ GeV
- $p_{lept1} + p_{lept2} + Missing E_T < M_H$
- Sophisticated jet requirements
 - No jets **OR**
 - $15 < E_T < 55 \text{ GeV}$ with one jet ($|\eta| < 2.5$) OR
 - $15 < E_T < 40$ GeV with two jets ($|\eta| < 2.5$)

Acceptance is ~0.4% [including $Br^2(W \rightarrow l\nu)$] for m_H>160 GeV

This search has explicit test-mass dependence. The background depends on the signal hypothesis

Backgrounds in the $gg \to H \to W^{\scriptscriptstyle +}W^{\scriptscriptstyle -}$ Channel

- Mostly WW
- · Lepton Fake Rates are calibrated with jet data

$$m_H = 160 \text{ GeV}, \ \int \mathcal{L} dt = 360 \text{ pb}^{-1}$$

Category	Events
WW	9.79 ± 1.03
Drell-Yan+WZ+Wy+ZZ+top	2.65 ± 0.22
Misid'd Leptons	1.33 ± 0.67
Total BG	13.78 ± 1.24
Observed	16
$H \rightarrow W^+ W^-$	0.58 ± 0.04

 $gg \rightarrow H \rightarrow W^+W^-$ Acceptance

Systematic Error (%)
3
3.3
3
1
2
2
1
6

Extracting Limits with the $\Delta\Phi$ Distribution

Collected CDF+DØ SM Higgs Limits Tevatron Run II Preliminary

- Cluttered: Let's combine!
- Doesn't show expected limits: can be more important!
- Problem including WH signal in ZH search channel what's the "SM prediction?" -- new plot: fractional rate limit

Another Representation - Ratios of Limits to SM

Tevatron Run II Preliminary

Getting Started with $ZH \rightarrow I^+I^-bb$

- Selection:
 - $Z^0 \rightarrow e^+e^-$ or $\mu^+\mu^-$
 - 2 or 3 jets, at least one b-tag
 - Low Missing E_T

Most of Background: Z⁰bb (Zcc and Zc and Z+LF also there)

Background: 3 events/100 pb⁻¹ Signal: 0.03 events/100 pb⁻¹

Electrons

Jets

Additional Discrimination Power in the $ZH \rightarrow I^+I^-bb$ Channel

Encouraging feature: Predicted Zbb and Z+2p shapes are similar

Sensitivity with Existing CDF Analyses

New 360 pb⁻¹ h \rightarrow WW analysis used

lvbb vvbb llbb WW WWW As They Are

Cross-Section times branching fraction limit as a multiple of the SM rate

No Lumi Scale Factors: analyses "as is"

Luminosity Thresholds for CDF's Channels Combined

Assumption: Systematic errors scale with $1/\sqrt{\int \mathcal{L}dt}$

All channel's luminosities scaled to 300 pb⁻¹ and then scaled together

Width of bands given by systematic errors on/off

Would need 50 fb⁻¹ to exclude m_H=115 GeV if:
1) DØ stops taking data
2) CDF never does any work on the channels

Lumi Thresholds -- lvbb,vvbb,llbb,WW,WWW As They Are

We hope to do much better!

So How Do We Get There??

Luminosity Equivalent $(s/\sqrt{b})^2$

Start with existing channels, add in ideas with latest knowledge of how well they work.

Improvement	WH→lvbb	ZH→vvbb	ZH→llbb
Mass resolution	1.7	1.7	1.7
Continuous b-tag (NN)	1.5	1.5	1.5
Forward b-tag	1.1	1.1	1.1
Forward leptons	1.3	1.0	1.6
Track-only leptons	1.4	1.0	1.6
NN Selection	1.75	1.75	1.0
WH signal in ZH	1.0	2.7	1.0
Product of above	8.9	13.3	7.2
CDF+DØ combination	2.0	2.0	2.0
All combined	17.8	26.6	14.4

Expect a factor of ~10 luminosity improvement per channel, and a factor of 2 from CDF+DØ Combination ²⁴

Dijet Mass Resolution Improvements

- Larger jet cones
- track-cluster association
- b-specific corrections
- Advanced techniques (NN, "hyperball")

Target: 10% resolution for two central jets

Effect of Forward Jets on Dijet Mass Resolution

NN Extension of SECVTX B-tag

non-top backgrounds (single-top) **Neural Network** after SecVtx \approx 50% Signal:

Approach:

require SecVtx

- improve purity by including:
 - long lifetime (also by SecVtx)
 - decay length of SecVtx
 - D₀ of tracks
 - large mass
 - mass at SecVtx
 - p_{T} of tracks w.r.t jet axis
 - decay multiplicity
 - # of tracks
 - decay probability into leptons
 - # of leptons

single-top, $t\overline{t}$, $Wb\overline{b}$ **Background:** $Wc\bar{c}, Wc$, Mistags

(mixed acc. to background estimation)

Forward Electrons

Currently plug electrons only used as a Z^0 veto in the lvbb channel.

Phoenix electrons give 25% extra signal 40% extra background

$$s/\sqrt{b}
ightarrow 1.06 s/\sqrt{b}$$

" $(s/b)_{\text{forw}} = 0.6(s/b)_{\text{central}}$ Not optimal to add -- treat as separate 28

Expected Signal Significance CDF+DØ vs Luminosity

m_H=115 GeV assumed

The $h^0, A^0 \rightarrow \tau^+ \tau^-$ Channel: Selection

- Isolated e or μ , E_T > 10 GeV
- Hadronic tau:
 - 1 or 3 tracks. $\Sigma q = \pm 1$
 - p_{T,had}>15 GeV
 - m_{had} < 1.8 GeV (incl. π^{0} 's)
 - isolated (0.52 rad= θ_{iso})
 - · charge opposite to leptonic tau
- $\cdot Z^0$ veto
- $ilde{H}_T >$ 50 GeV

(sum of tau candidate E_T plus Missing E_T)

The $h^0, A^0 \rightarrow \tau^+ \tau^-$ Channel: Backgrounds

- $Z/\gamma^* \rightarrow \tau^+\tau^-$: irreducible
- W \rightarrow Iv + jet \rightarrow fake τ : estimated with data
- dijets \rightarrow fake lepton + fake τ_h : estimated with data
- Other backgrounds: $Z \rightarrow II$, tt, diboson,... Use MC.

Fake rate: P(fake τ_h |jet) = 1.5% at E_T=20 GeV, drops to 0.1% at E_T=100 GeV

Source	Events in 310 pb ⁻¹
$Z/\gamma^{\star} \rightarrow \tau^{+}\tau^{-}$	405 ± 24
Fake $\tau_h + X$	75 ±15
All other bg	16 ± 1
Total	496 ± 38
Observed	487

The $h^0, A^0 \rightarrow \tau^+ \tau^-$ Channel: Signal Acceptance

Systematic Uncertainties on Signal Estimation

Error Source	Error (%)	applies to
e ID	1.3	e
μ ID (CMUP)	4.4	μ
μ ID (CMX)	4.6	μ
τID	3.5	$\tau_{\rm h}$
Event Cuts	1.8	all
PDF	5.7	all signal
e trig	1.9	e
μ trig (CMU)	1	μ
μ trig (CMX)	1	μ
track τ trig	1	$\tau_{\rm h}$
Luminosity	6	all

An Approximate Mass Reconstruction: m_{vis}

Limits on Cross-Section × Branching Ratio

 $\phi = h^0$, A^0 or H^0 or a sum of states with similar masses ₃₄

Tau Channel Prospects for the Future

Summary and Outlook

 We have preliminary searches in a great variety of channels, most with ~300 pb⁻¹ of data analyzed for Summer 2005.

SM Higgs Searches $W^{\pm}H \rightarrow \ell^{\pm}\nu b\overline{b} \quad ZH \rightarrow \nu \overline{\nu} b\overline{b}$ $ZH \rightarrow \ell^{+}\ell^{-}b\overline{b} \quad gg \rightarrow H \rightarrow W^{+}W^{-}$ $W^{\pm}H \rightarrow W^{\pm}W^{+}W^{-}$

MSSM Higgs Search

$$H \to \tau^+ \tau^-$$

- We have tools to combine them together and estimate sensitivity
- The sensitivity is currently insufficient to test for presence or absence of a SM Higgs boson but we will get more data and improve our channels with wellunderstood techniques.
- MSSM Higgs searches are getting exciting.

Backup Slides Follow

Another Interesting Candidate Event

Jet₁ E_T =84.7 GeV Jet₂ E_T =71.9 GeV -- Tagged

 m_{jj} = 129 GeV Missing E_T = 98 GeV

An Interesting Candidate Event

Two b-tagged jets

 m_{jj} = 82 GeV Missing E_T=145 GeV Could be ZZ

Search For $W^{\pm}H^{0} \rightarrow W^{\pm}W^{+}W^{-}$

- Like-sign dilepton selection ("1"=more energetic lepton, "2"=less energetic)
 - $p_{T,1} > 20 \text{ GeV}, p_{T,2} > 6 \text{ GeV}$
 - reject conversions, cosmics, $Z \rightarrow$ leptons
 - Signal region: $p_{T,2}>16 \text{ GeV}$, $p_{T,12} = |\vec{p}_{T,1} + \vec{p}_{T,2}| > 35 \text{ GeV}$ for $m_{H}<160 \text{ GeV}$. Harden $p_{T,2}$ cut to 18 GeV for $m_{H}>160 \text{ GeV}$

Category	Events in 193.5 pb ⁻¹
Conversions	0.61 ± 0.61
Fake Leptons	0.12 ± 0.01
Other sources*	0.22 ± 0.10
Total background	0.95 ± 0.64
Observed	0

*Other backgrounds: Diboson, top, Wqq SM WH signal: 0.03 events ($m_H = 160^{40} \text{GeV}$)

$$W^{\pm}H^{0} \rightarrow W^{\pm}W^{+}W^{-}$$
 Signal Acceptance and Limits

CDF sees Z \rightarrow bb decays in Run 2

Double b-tagged events with no extra jets and a back-to-back topology are the signal-enriched sample: $E_t^3 < 10 \text{ GeV}, \Delta \Phi_{12} > 3$ Among 85,784 selected events CDF finds 3400±500 Z→bb decays - signal size ok - resolution as expected - jet energy scale ok! This is a proof that we are in

business with small S/N jet resonances!

CDF expects to stringently constrain the b-jet energy scale with this dataset

Check - Recalculate All Channels' Sensitivities with CLs

Recomputing H to WW Expected limits

Green: Expected, old analysis. Red: Expected, new analysis Black: SM

Same limits computed by channel experts

Impact Parameter Resolution Performance

Fig. 2. σ_{d_0} vs. p_T for all tracks intersecting sensors located at r = 1.6 cm. Distributions for tracks intersecting regions of SVXII with (without) extra material are shown in the graph on the left (right). Fit results are shown overlaid.

Status as of Nov. 2004

WH \rightarrow Ivbb Cut Optimization: E_T Cuts on the two jets

Operating point

 s/\sqrt{b} is maximized with the lowest possible jet E_T cuts we can tolerate!

> Further analysis optimization underway!

SM Higgs Searches at the Tevatron: $WH \rightarrow Ivbb$

$ZH \rightarrow vvbb$ Channel: Optimized Cuts

Benchmarked at M_h =120 GeV

Selection cut	ZH 120 288.9 pb ⁻¹	Acceptance (%)	S/sqrt(B)
Basic Cuts	0.205±0.004	5.92 ±0.1	0.03
$\Delta \varphi (1^{st} Jet, \mathbb{E}_T) > 0.8$	0.205 ±0.004	5.92±0.1	0.03
H_T significance	0.183 ± 0.003	5.23±0.1	0.03
$1^{st} JetE_T > 60 GeV$	0.161±0.003	4.68±0.09	0.04
Di-jet mass cut	0.126±0.016	3.64±0.08	0.06

$$H_T$$
 significance = H_T/H_T

Background Contributions in Control Regions after Optimization Cuts

No mass window cut yet

Process	Control Region 1	Control Region 2	Signal Region
QCD multi-jet	9.5 ± 4.3	5.2 ± 3	2.6 ± 1.7
TOP	0.01 ± 0.002	8.9 ± 2.3	2.1 ± 0.4
Di-boson	0 ± 1.2	1.5 ± 0.3	1.1 ± 0.2
W + h.f.	0 ± 1.2	9.7 ± 3.5	3.7 ± 2.6
Z + h.f.	0 ± 0.18	1.1 ± 0.3	3.2 ± 1.2
Mistag	2.9 ± 0.4	11.9 ± 2.3	7.0 ± 1.0
Total Expected BCK	12.4 ± 4.6	38.3 ± 5.7	19.7 ± 3.5
Observed	16	47	19

L=289 pb⁻¹

ZH->vvbb Control Samples - Constrain Background Levels

Region #1: QCD-dominated Mistags from data, bb bg shape from MC, scaled to fit data rate.

After "optimized cuts"

Control Region #2 - Requiring a Lepton

Optimized Cuts Applied

SM Higgs Boson Production and Decay

Non-W Backgrounds in WH→lvbb

• Estimated with - Missing E_T vs. R_{iso}

R_{iso}=[Energy inside cone of size 0.4 around lepton] / [Energy of lepton]

Non-W background is assumed to have uncorrelated R_{iso} and ${\pmb {\cal E}}_T$

Non-W: D= C*(A/B) (after correcting for signal in the background samples)

WH→Ivbb Background Summary

Background Source	Rate (events in 319 pb ⁻¹)	How Estimated
Mistags	39.9 ± 3.1	Neg. Tags in jet data
Wbb	54.0 ± 18.4	Data & MC
Wcc	19.5 ± 6.6	Data & MC
Wc	16.8 ± 4.3	Data & MC
Diboson+Z→ττ	5.0 ± 1.1	МС
non-W	16.5 ± 3.2	\mathbf{E}_{T} vs. isolation in data
tt	14.1 ± 2.5	MC
Single top	9.6 ± 2.0	MC
Total Background	174.7 ± 26.3	
Observed Data	187	

The Higgs Bosons of the MSSM

- Two Complex Higgs Doublets! Needed to avoid anomalies.
- Five Degrees of Freedom plus W^{+,-}, Z⁰ longitudinal polarization states
- Five scalars predicted: h, H, A, H⁺, H⁻
- CP-conserving models: h, H are CP-even, A is CP-odd
- Independent Parameters:
 - m_A
 - $tan\beta$ = ratio of VEV's
 - µ
 - M_{SUSY} (parameterizes squark, gaugino masses)
 - m_{gluino} (comes in via loops)
 - Trilinear couplings A (mostly through stop mixing)
- Map out Higgs sector phenomenology variations of all other parameters correspond to a point in this space
- And a real prediction: $m_h < \sim 135~{
 m GeV}$ Let's test it!

Couplings of MSSM Higgs Bosons Relative to SM

W and Z couplings to H, h are **suppressed** relative to SM (but the sum of squares of h⁰, H⁰ couplings are the SM coupling). Yukawa couplings (scalar-fermion) can be enhanced

Higgs Boson Production Mechanisms

The $h^0, A^0 \rightarrow \tau^+ \tau^-$ Channel

- Capitalize on large production cross-section
- Tau leptons are distinct from QCD background
- bbbb channel is possible too we're working on it.
- Useful $\tau^+\tau^-$ decay modes one hadronically decaying τ

Mode	Fraction (%)	Comments
$\tau_e \tau_e$	3	Large DY bg
$\tau_{\mu}\tau_{\mu}$	3	Large DY bg
$\tau_{e}\tau_{\mu}$	6	Small QCD bg
$\tau_e \tau_h$	23	Golden
$\tau_{\mu} \tau_{h}$	23	Golden
$\tau_{h}\tau_{h}$	41	Large QCD bg

Interpretations in MSSM Benchmarks

LEP Limits – m_{top} =174.3 GeV for historical reasons. ₆₀

Hadronic Tau Candidates are Well Modeled

Higgs Boson Production and Decay at High tanß

Interesting feature of many MSSM scenarios (but not all!):

 $[m_h, m_H] \approx m_A$ at high tan β (most benchmark scenarios..)

- At leading order, $\Gamma(A^0 \rightarrow bb)$ and $\Gamma(A^0 \rightarrow \tau^+\tau^-)$ are both proportional to $\tan^2\beta$.
- Decays to W, Z are not enhanced and so Br. falls with increasing $\tan\beta$ (even at high m_A)
- Br($A^0 \rightarrow bb$) ~ 90% and Br($A^0 \rightarrow \tau^+ \tau^-$) ~ 10% almost independent of tan β (some gg too).

B-Tagging: A Tool Shared by the Low-Mass Analyses

Sensitivity with Existing CDF Analyses

old $h \rightarrow WW$ analysis used

lvbb vvbb llbb WW WWW As They Are

Cross-Section times branching fraction limit as a multiple of the SM rate

64

Luminosity Thresholds for CDF's Channels Combined

old $h{\rightarrow}WW$ analysis used

Assumption: Systematic errors scale with $1/\sqrt{\int \mathcal{L}dt}$

All channel's luminosities scaled to 300 pb⁻¹ and then scaled together

Width of bands given by systematic errors on/off

Would need 50 fb⁻¹ to exclude m_H=115 GeV if:
1) DØ stops taking data
2) CDF never does any work on the channels

Lumi Thresholds -- lvbb,vvbb,llbb,WW,WWW As They Are

Unlikely!!