Discriminating SUSY and UED at LHC

K.C. Kong

Institute for Fundamental Theory University of Florida, Gainesville

In collaboration with:

A. Datta (Harish-Chandra Research Institute) K. Matchev (University of Florida)

TeV4LHC workshop October 20-22, 2005 Fermi National Accelerator Laboratory

Motivation and outline

• What is the difference between SUSY and UED ?

	SUSY	UED
Spin of new particles	$\pm \frac{1}{2}$	same
Couplings of new particles	same as SM	same^* as SM
Masses	SUSY breaking ?	boundary terms ?
How many new particles	1^{**}	KK tower
Generic signature***	${\not\!\!\!E}_T$	${\not\!\!\!E}_T$

- Discriminating method :
 - Finding KK tower
 - Spin measurements

* Couplings among some KK particles may have factors of $\sqrt{2}$, $\sqrt{3}$, \cdots

**
$$N = 1$$
 SUSY

*** with dark matter candidates

Looking for level 2 KK partners

- n = 1 is like MSSM and can be discovered (Cheng, Matchev, Schmaltz, hep-ph/0205314)
- Look for n=2
- Production

- a, b : kinematically suppressed
- c : suppressed couplings
- only V_2 have KK number violating couplings to SM
- Q_2 and L_2 : either forbidden or higher dimensional operator
- Decay

- a : SM particle is soft
- b is like direct n = 1 production
- c is the best : resonances

Discovery reach for MUEDS at LHC in inclusive dilepton channel

(Datta, Kong, Matchev, hep-ph/0509246)

How many resonances

50 40 $pp \rightarrow V_2 \rightarrow \mu^+ \mu^$ $pp \rightarrow V_2 \rightarrow e^+ e^-$ 40 30 γ_2 γ_2 Events/bin 30 Ζ, Events/bin \mathbf{Z}_{2} 20 20 10 10 $L=100 \text{ fb}^{-1}$ $L=100 \text{ fb}^{-1}$ 0 0 950 1000 1050 1100 1150 900 900 950 1000 1050 1100 1150 $M_{\mu\mu}$ (GeV) M_{ee} (GeV)

(Datta, Kong, Matchev, hep-ph/0509246)

- Narrow peaks are smeared due to the mass resolution
- Two resonances can be better resolved in e^+e^- channel
- Is this a proof of UED ?
 - Not quite : resonances could still be interpreted as Z's
 - Smoking guns :
 - * Their close degeneracy
 - * $M_{V_2} \approx 2M_{V_1}$
 - * Mass measurement of W_2^{\pm} KK mode
- However in nonminimal UED models, degenerate spectrum is not required

 \rightarrow just like SUSY with a bunch of Z's

 \rightarrow need spins to discriminate

Spin measurement

- To prove SUSY, must measure spins but it's difficult
 - LSP is neutral \rightarrow missing energy
 - There are two LSPs \Rightarrow cannot find CM frame
 - Decay chains are complicated \rightarrow cannot uniquely identify subchains
 - Look for something easy : look for 2 SFOS leptons $\tilde{\chi}_2^0 \rightarrow \tilde{\ell}^{\pm} \ell^{\mp} \rightarrow \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$

(subtract 20FOS leptons (see Craig's talk))

– Dominant source of $\tilde{\chi}_2^0$: squark decay $\tilde{q} \to q \tilde{\chi}_2^0 \to q \tilde{\ell}^{\pm} \ell^{\mp} \to q \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$:

- Study this chain
 - Observable objects : q and ℓ^{\pm}

Dilepton distribution

- Look for spin correlations in $M_{\ell^+\ell^-}$
- Choose a study point in one model and fake mass spectrum in the other model

(Kong, Matchev Preliminary and Smillie, Webber hep-ph/0507170)

• Why are they the same ?

Dilepton distribution

• How do we fake the two ?

(Smillie, Webber hep-ph/0507170)

Phase Space :
$$\frac{dN}{d\hat{m}} = 2\hat{m}$$

SUSY : $\frac{dN}{d\hat{m}} = 2\hat{m}$
UED : $\frac{dN}{d\hat{m}} = \frac{4(y+4z)}{(1+2z)(2+y)} \left(\hat{m}+r\,\hat{m}^3\right)$
 $r = \frac{(2-y)(1-2z)}{y+4z}$

where
$$\hat{m} = \frac{m_{\ell\ell}}{m_{\ell\ell}^{max}}$$
, $y = \left(\frac{m_{\tilde{\ell}}}{m_{\tilde{\chi}_2^0}}\right)^2$ and $z = \left(\frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{\ell}}}\right)^2$

Dilepton distribution

(Kong, Matchev Preliminary)

- Good point : $m_{ ilde{\chi}^0_1}:m_{ ilde{\ell}}:m_{ ilde{\chi}^0_2}=9:10:20$
- Better point : $m_{ ilde{\chi}^0_1}:m_{ ilde{\ell}}:m_{ ilde{\chi}^0_2}=1:2:4$
- If r is big (not in mSUGRA or MUED), can distinguish

Spin measurement : Barr method

- Look at correlation between q and ℓ (Barr, hep-ph/0405052)
- Complications:
 - Which (quark) jet is the right one ? (Webber, hep-ph/0507170 "cheated", picked the right one) One never knows for sure. There can be clever cuts to increase the probability that we picked right one (work in progress)
 - Which lepton ? : "near" and "far" cannot be distinguished
 → must add both contributions. Improvement on selection (work in progress)
 - Don't know q or \bar{q}
- Can distinguish charges of leptons : look at $q\ell^+$ and $q\ell^-$ separately and compare

Barr method

• $f_q + f_{\bar{q}} = 1$

Barr method

(Datta, Kong, Matchev, hep-ph/0509246 and Smillie, Webber, hep-ph/0507170)

• Choose a study point : UED500 ($\mathcal{L} = 10 f b^{-1}$)

• Each $M_{q\ell}$ distribution contains 4 contributions

$$\begin{pmatrix} \frac{d\sigma}{dm} \end{pmatrix}_{q\ell^+} = f_q \left(\frac{dP_2}{dm^n} + \frac{dP_1}{dm^f} \right) + f_{\bar{q}} \left(\frac{dP_1}{dm^n} + \frac{dP_2}{dm^f} \right)$$
$$\begin{pmatrix} \frac{d\sigma}{dm} \end{pmatrix}_{q\ell^-} = f_q \left(\frac{dP_1}{dm^n} + \frac{dP_2}{dm^f} \right) + f_{\bar{q}} \left(\frac{dP_2}{dm^n} + \frac{dP_1}{dm^f} \right)$$

• Asymmetry:

$$A^{+-} = \frac{\left(\frac{d\sigma}{dm}\right)_{q\ell^+} - \left(\frac{d\sigma}{dm}\right)_{q\ell^-}}{\left(\frac{d\sigma}{dm}\right)_{q\ell^+} + \left(\frac{d\sigma}{dm}\right)_{q\ell^-}}$$

- $f_q + f_{\bar{q}} = 1$
- If $f_q = f_{\bar{q}} = 0.5$, $A^{+-} = 0$ (for example, in the "focus point" region)

Asymmetry : UED500

• Asymmetry with UED500 mass spectrum ($\mathcal{L} = 10 \mathrm{fb}^{-1}$)

(Datta, Kong, Matchev, hep-ph/0509246)

• "Detector level" charge asymmetry ($\mathcal{L} = 7 \mathrm{fb}^{-1}$)

(Smillie, Webber hep-ph/0507170)

Asymmetry : SPS1a

• Asymmetry with SPS1a mass spectrum ($\mathcal{L} = 10 \mathrm{fb}^{-1}$)

(Kong, Matchev Preliminary)

• Detector level charge asymmetry ($\mathcal{L} = 131 \mathrm{fb}^{-1}$)

(Smillie, Webber hep-ph/0507170)

SPS1a mSUGRA point

- How to fake SPS1a asymmetry
 - five parameters in asymmetry : f_q , x, y, z, $m_{\tilde{q}}$ * $x = \left(\frac{m_{\tilde{\chi}^0_2}}{m_{\tilde{q}}}\right)^2$, $y = \left(\frac{m_{\tilde{\ell}}}{m_{\tilde{\chi}^0_2}}\right)^2$ and $z = \left(\frac{m_{\tilde{\chi}^0_1}}{m_{\tilde{\ell}}}\right)^2$

– three kinematic endpoints : $\vec{m_{qll}}$, m_{ql} and m_{ll}

*
$$m_{qll} = m_{\tilde{q}}\sqrt{(1-x)(1-yz)}$$

* $m_{ql} = m_{\tilde{q}}\sqrt{(1-x)(1-z)}$
* $m_{ll} = m_{\tilde{q}}\sqrt{x(1-y)(1-z)}$

- two parameters left : f_q , x
- minimize χ^2 in the $(x, \, f_q)$ parameter space
- minimum χ^2 when UED and SUSY masses are the same and $f_q \approx 1$

(Kong, Matchev Preliminary)

SPS1a mSUGRA point without smearing

- $f_q = 1$
 - better but still see the difference
 - difficult to fake SPS1a point

(Kong, Matchev Preliminary)

- Jet energy resolution ?
 - \rightarrow histogram will be smeared
 - \rightarrow can we fake once we include smearing ?

SPS1a mSUGRA point with smearing

• 10% jet energy resolution + statistical error $\rightarrow \chi^2$ better but not enough \rightarrow SPS1a can not be faked

(Kong, Matchev Preliminary)

• effect of wrong jets \rightarrow asymmetry smaller ? (work in progress)

Summary

• n = 2 KK resonances :

- easy but may not be direct proof of UED

- Spin measurements: 2 different methods
- $M_{\ell^+\ell^-}$: difficult but possible away from mSUGRA point
- A^{+−} ≠ 0 : different from phase space ⇒ new particles with non-zero spins
- Asymmetry measures "relative" chirality
- Whether one can measure $A^{+-} \neq 0$ or not depends on the particular point in parameter space
 - "focus point" : \tilde{g} production dominates, A^{+-} washed out
 - "two onshell sleptons" : two chiralities may wash out A^{+-}
 - "offshell sleptons" : less asymmetry
- If you measure asymmetry, is it SUSY/UED ?
 - SPS1a \rightarrow lucky point \rightarrow SUSY
 - degenerate case (e.g., UED) : \rightarrow can't tell
- Difficulties for optimistic case : (needs further studies)
 - jet identification : what is the right jet?
 - lepton identification :
 - * leptons from $\tilde{\chi}_1^{\pm}$ or W_1^{\pm}
 - (OF subtraction, see Craig's talk)
 - * near and far
 - SM background
 - Cuts : might distort shapes (see Craig's talk)