Preparing for Physics with Electrons and Photons @ LHC

Yuri Gershtein

Outline

- Tevatron experience with EM ID
 - ID principles and challenges
- Transition to LHC and new challenges
 - Even bigger pressure: If the new physics is just beyond Tevatron reach, time to discovery would be the time to accumulate data – it will be the time to understand detectors: discovery timing can be crucial to the future of HEP
 - increased tracker material
 - more ambitious precision goals
- Measurements of ID Efficiency / Scales / Resolutions
 - Z \rightarrow ee, Z \rightarrow µµ γ (+ W, J/ ψ , Y, etc...)
- Try out algorithms at Tevatron
 - gives at least qualitive picture
- Summary

EM ID @ Tevatron

- Electrons
 - Two principal backgrounds: jets and photons
 - Two reconstructions paths
 - start with calorimeter
 - start with tracker
- Photons
 - Backgrounds from jets and electrons
 - reconstruction starts with calorimeter
- Calorimeter based reconstruction is essentially the same for electrons and photons
 - although the cut values may not be
 - separation between electrons and photons happens on the basis of whether or not there is a "matching track"
- Electrons reconstructed with track based algorithm are identified in a way somewhat similar to the calorimeter based
 - optimized for finding electrons in jets

EM ID @ Tevatron

- CDF and DØ have conceptually mature algorithms
 - clusters with small had. fraction:
 - CDF: had/EM $< 0.055 + 0.00045 \cdot E^{\gamma}$
 - \bullet DØ: EM/(EM+had) > 0.9
 - isolation in calorimeter and tracker
 - can be absolute or relative to photon energy
 - CDF's track isolation: $\Sigma |p_T| < 2 \text{ GeV} + 0.005 \cdot E_T^{\gamma}$
 - DØ calorimeter isolation: EM(0.2) / (EM(0.4) + had(0.4)) < 0.15
 - shower shape consistent with EM object
 - CDF: use shower max. chamber information
 - DØ: use fine segmentation of calorimeter (both longitudinal and transverse)
- Electrons v.s. photons: charged track pointing to the cluster
 - various definitions of "pointing"
 - DØ also has hit counts in roads to pick lost electron tracks
- At start-up: "vanilla" definitions with simple cuts
- Plethora of multivariate discriminators later in the run

Challenges @ Tevatron

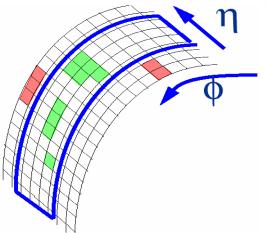
- Tuning MC is hard. Biggest problem seems to be in the material before the calorimeter (tracker & infrastructure)
 - mechanical drafts are slow to propagate to GEANT
 - as-built detector is not the same as as-drafted
- Conversions (photon efficiency, electron background)
 - hard to determine probability of
 - correct material budget
 - reconstruction of two tracks very close in space
 - probabilities to reconstruct tracks from conversion seem to be correlated
 - but the probability is relatively small
 - with LHC detectors the problem is going to be worse
- At Tevatron, there is no clean source of isolated high E_T photons to test the MC predictions
 - Have to rely on MC to describe difference between electrons and muons
 - At LHC, one can use radiative Z decays! (this idea was born in the first Tev4LHC workshop)

EM ID @ Tevatron

- Example of difficulties:
 - energy scales for electrons and photons are different
 - Two reasons: containment and material
 - LHC detectors have more material in the tracker

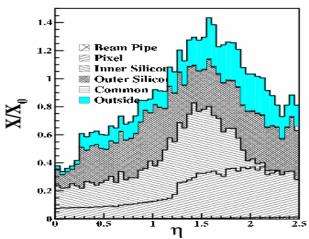
- energy scale depends on ID cuts
 - Smaller effect at DØ, but dominant at CMS

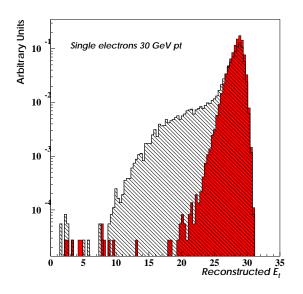
EMID at CMS


- Lead Tungstate crystals
 - \bullet $\Delta \phi \times \Delta \eta \sim 0.02 \times 0.02$
- Up to 1.5 X₀ of material in front of the ECAL

"Super" cluster Reconstruction:

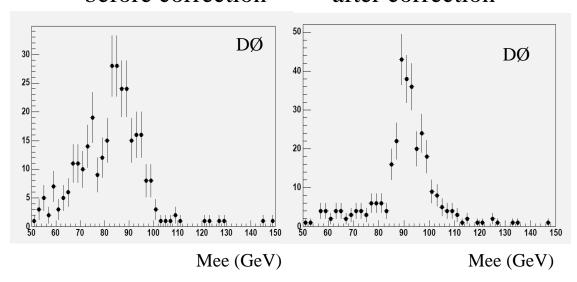
find bumps in calorimeter


cluster the bumps


• approximate window size $\Delta \phi \times \Delta \eta \sim 0.8 \times 0.06$

Note:

ATLAS'es material is only a little smaller



"Brem recovery" at DØ

The brem recovery algorithm can be checked with real data!

all di-electron events

di-electron events with identified brem before correction after correction

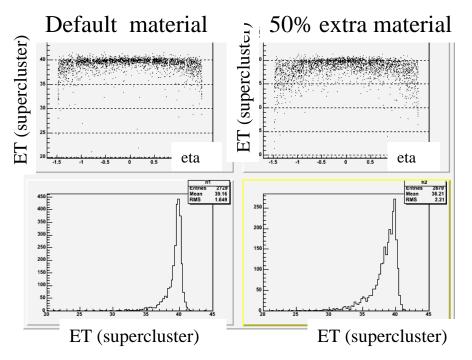
- Unfortunately, collecting all the energy of all brems is not enough to recover the resolution @ CMS
 - brems convert and electrons from conversion curl in the magnetic field
 - 1/28 2000 t all the energy reaches the calorimeter

Mee (GeV)

Tracker Material

 All previous experiments tried hard to implement correct material in MC and all miss by a factor of 1.5 to 2

Most recent examples - Run2 of Tevatron: DØ missed factor of 2, CDF


(their third silicon!) missed 50%

Effect of 50% more material for 40 GeV electrons in CMS barrel:

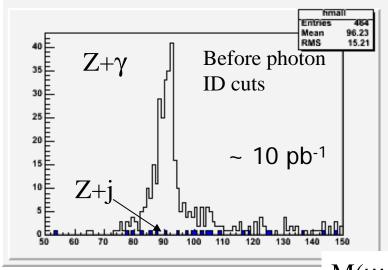
- energy scale changes
- resolution worsens
- efficiency of ID cuts decreases

e's and γ 's propagate differently

- electron continuously looses energy via Bremsstrahlung
- photons propagate intact until the first conversion
- Energy scales are non-linear, different for e and γ and depend on detector region (both rapidity and azimuth) measuring amount of material *in situ* is needed

Two-Pronged Attack

systematic studies how extra material affects electron and photon reconstruction and developing methods for measuring material *in situ*


development of tools to measure true efficiency/resolution/energy scale of electrons and photons using data

Material Measurement

- Not only the total material spatial distribution too
 - material close to IP is more dangerous (magnetic field!)
- Total material can be measured in several ways
 - Mass v.s. pT for resonances decaying into MIPs (like $J/\psi \rightarrow \mu\mu$)
 - $p_T(end)/p_T(begin)$ of electron tracks (special fitting algorithm exists that allows for large p_T changes)
- Spatial distribution
 - counting converted photons
- Main problem
 - Know efficiency of conversion reconstruction v.s. R it is not very likely to be described by the MC
 - In other experiments (CDF, DØ) outer tracker is "lighter", so electrons can be tracked relatively easily, but in CMS tracker gets heavier with radius

Measuring Efficiencies/Scales/Resolutions

- While material in MC is tuned measure everything!
- Algorithms for efficiency/fake rate measurements in data
 - Z→ ee for electrons similar to the way it was done at Tevatron
 - \bullet Z $\rightarrow \mu\mu\gamma$ for photons too hard at Tevatron, but possible at LHC!!
 - still need MC to extrapolate to, for example, extrapolate to different momentum range
 - study possible biases, precision, etc...

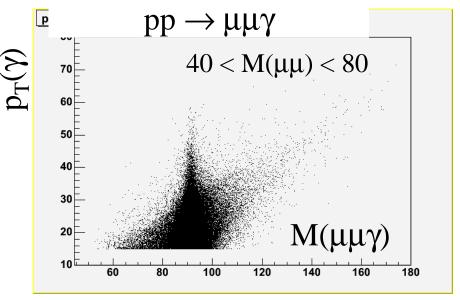
Extract:

photon ID cuts efficiency photon energy scale

Prepare software tools to do this kind of analysis quickly upon startup

Examples of Biases

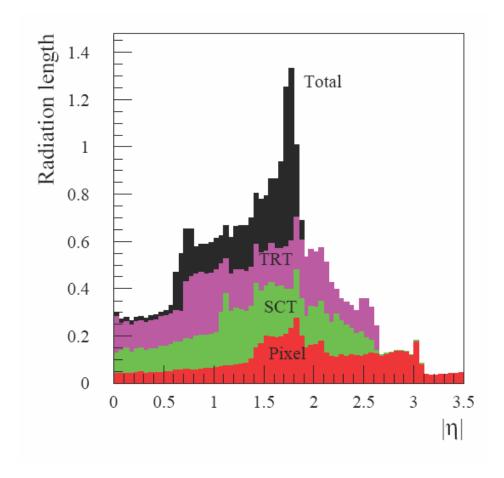
Instrumental


correlation between objects: i.e. if in some fraction of the cases,
a wrong crossing is read out for the tracker

Fiducial

in DØ electron identification is more efficient for events with PV close to zero. Requiring a well-identified "tag" in Z→ee biases the PV distribution and therefore the efficiency can be overestimated

Physical


 kinematic cuts bias peak position and shape (both because of physics and resolution effects)

Summary

- Experience gained at Tevatron is very valuable for LHC
- The LHC Physics Center (LPC) is an excellent opportunity to transfer it to LHC (at least CMS), and in a way that allows for a transfer of technical stuff in addition to ideas
- At start-up, the pressure to produce physics results is enormous, while detector does not work as MC says it should
 - short term strategy: measure all you need in data, use MC only for corrections, make sure you can make discovery fast
 - long term strategy: reconcile data and MC which would allow use of sophisticated algorithms, re-tune all algorithms if needed, etc...
 - hard to balance the two, need a good plan on collaboration management level!!

ATLAS Inner Detector Material

