

1

Higgs Sensitivity Update @ DØ

Gregorio Bernardi for the DØ Higgs group

Status in the different channels improvement prospects (2 steps)

SM Higgs Search: Outlook

Sensitivity in the mass region above LEP limit (114 GeV) starts at ~2 fb⁻¹ With 8 fb⁻¹: exclusion 115-135 GeV & 145-180 GeV, 5 - 3 sigma discovery/evidence @ 115 – 130 GeV

Meanwhile

- \rightarrow understanding detectors better, optimizing analysis techniques
- → measuring SM backgrounds (Zb, WW, Wbb)
- → Placing first Higgs limits which can be compared to the prospects

For 115 GeV Higgs, mass window cut: 0 data, 0.05 exp Higgs, 1.07 bckgd →95% CL limit on WH of 9.0 - 12.2 pb for m_Higgs of 105-135 GeV Published Run II limit better than Run I → detector improvements The difference is so huge with SM expectation

"you'll never make it"

(factor 50 in sensitivity, factor 2500 in luminosity, i.e. 450 fb⁻¹ would be needed !)

Comparison of WH published Results with Sensitivity Prospective Study

	DØ Analysis (PRL `05) 174 pb ⁻¹ WH→ evbb	Prospective Study ('03) normalized to 174 pb ⁻¹ and to WH \rightarrow bbev	Ratio Prospective DØ Analysis
Dijet mass window	[85,135]	[100,136]	R=0.72
Dijet mass resolution	14 +/- 1 %	10 %	R=0.71
Signal events (S)	0.049	0.145	R=3.0
Background evts (B)	1. 07	1.76	R=1.6
S/√B	0.045	0.11	R=2.4
S/B	0.046	0.082	R=1.8

We are missing a factor 2.4 in sensitivity for this WH(e) channel. The following factors are not included:

3 (leptons) * 2 (experiments) * 2.5 (channels) * 1.8 (NN-selec) * 12 (lumi \rightarrow 2fb⁻¹) = 324 = 18²

→ factor of **18** is not included in WH sensitivity

→ Combining both factor $2.4*18 = 43 \rightarrow \text{consistent}$ with 50

ZH→vvbb searches

- Missing E_T from $Z \rightarrow vv$ and 2 b jets from $H \rightarrow bb$
 - Large missing $E_T > 25 \text{ GeV}$
 - 2 acoplanar b-jets with $\textbf{E}_{T}\!>\!\textbf{20}$ GeV, $|\eta|$ < 2.5
- Backgrounds
 - "physics"
 - W+jets, Z+jets, top, ZZ and WZ
 - "instrumental"
 - QCD multijet events and mismeasured jets
 - Huge x-section/small acceptance
- Strategy
 - Trigger on events with large missing \mathbf{H}_{T}
 - Estimate "instrumental" bckgd from data
 - Search for an excess in di-b-jet mass distribution

 \sim

b

ZH→vvbb Comparison with Prospective Study

All numbers @261pb ⁻¹	D0 analysis 261pb ⁻¹	SHWG (no NN)	Ratio SHWG/	Ratio HSS-nn/
	ZH→nnbb		D0 anal	D0 anal
#data	3	-	-	-
#signal (ZH+w н)	0.065+0.017	0.57 +0.43	8.8(12)	8.5(12)
<pre>#physics bkg</pre>	1.8	12	6.6	2.3
#instrumental bkg	0.37	12	32	7.3
#total bkg	2.2	24	11	3.1
S/B	0.037	0.041	4	4
S/√B	0.055	0.20	3.6	7 (NN)

Mass window (GeV)	80-130	85-130		0.9	0.72
Mass resolution	16%	10%		0.6	0.6
Taggability (2 jets)	60%	100%		1.7	1.7
B-tagging (2 b jets)	16%	40%	/	2.5	1.6
Trigger	70%	100%		1.4	1.1
Effi. W/o trig, b-tag	20%	30%		1.5	2.5
				8.9	7.5

Need progress on

- B-tagging

- Trigger

- Selection

optimization

- mass reconstruction

Need to improve signal acceptance!!

H→ WW Selection Criteria

- Preselection cuts
 - Trigger, Object ID, oppositely charged leptons
 - p_T>15 (10) GeV for leading (trailing) lepton
- **₽**_T>20 GeV
 - Suppresses dominant Z/ γ^* bkg
- Scaled $\not E_T > 15 \text{ GeV}$
 - Remove bkg due to large contributions from mismeasured jet energy
- Invariant mass cut
 - $m_{ee} < min(80 \text{ GeV}, M_{H}/2)$
 - $20 \text{ GeV} < m_{\mu\mu} < M_H/2$
 - Remove J/Ψ , Y, Z/γ^*

- Sum of p_T of the leptons and \not{E}_T , and the transverse invariant mass cuts
 - Rejects W+jets/ γ and WW events, and further reduces Z/ γ^*
 - Scalar sum of the transverse energies of the jets, $H_T < 100$ GeV
 - p_T>20 GeV, |η|<2.5
 - Suppresses bkg from tt production
- Azimuthal opening angle between the two leptons $\Delta \phi_{\parallel} < 2.0$
 - Remove remaining Z boson and multijet bkg which exhibit back-to-back topology
 - Not the case for Higgs decays because of spin correlations

Comparison of H \rightarrow **WW** with Sensitivity Report

	Current Analysis	HWG report	Same cuts as in HWG now	
L = 1 (fb-1)) H(160)> WW> ee			
Signal events (S)	0.635	0.325	0.24	S/B ratio is worse
Background evts (B)	16.8 (10.4 WW)	1.1 (1.0 WW)	2.5 (1.6 WW)	compared to HWG report
S/√B	0.16	0.31	0.15	
L = 1 (fb-1) H(160)> WW> emu			We are missing	
Signal events (S)	1.17	0.65	0.42	factor of 2 in
Background evts (B)	22.3 (16.3 WW)	2.2 (2.0 WW)	3.8 (2.7 WW)	sensitivity
S/√B	0.24	0.44	0.215	

Using same cuts (no likelihood) as in Tevatron Higgs Working group study now:

1. Smaller selection efficiency to H \rightarrow WW \rightarrow II

(HWG report assumes higher em-id efficiency and improved muon resolution);

2. Larger WW background and tt background contribution;

3. Only W +jet background was considered in HWG (no W+γ background)

DØ SM Higgs Summary

Ratio between Limit and SM expectation

Comparison with CDF (shown at P5)

We are similar at low mass (115-130 GeV), better at High mass, and we have no 140 GeV kink, but...

We are similar everywhere !

Progressing together, needed for final combination !

we should be around 6, not around 20 with the current lumi (0.3 fb⁻¹) Where can we gain ?

Two steps improvement to be ready by next P5 (2006)

Step1: End of 2005 → Publications on 300-400 pb⁻¹

WH/ZH: Optimize b-tagging (Looser) Combine single and double tag
WH(e): Include Phi-cracks
WH(μ): Combine single-μ and μ+jets trigger
ZH : Optimize Selection

WW : ...first optimization done/submitted !

Combine Single Tag / Double Tag (WH, e and mu)

Example from work in progress:

115 GeV mass window. e-DT: S=0.11 B=2.60 s/sqrt(b)= 0.068 e-ST: S=0.25 B=39.3 s/sqrt(b)= 0.039

115 GeV mass window. μ -DT: S=0.082 B=1.80 s/sqrt(b)= 0.062 μ -ST: S=0.147 B=32.2 s/sqrt(b)= 0.026

S/sqrt(B) is 40-50% in single tag compared to double tag. Equivalent to 20% more lumi than Double tag alone.

ZH \rightarrow vv**bb** : How limits are improved?

Work in progress

	MET+bb	MET+bb	MET+bb	MET+bb
	(105GeV)	(115GeV)	(125GeV)	(135GeV)
#ZH(nnbb)	0.23	0.19	0.14	0.078
Acceptance	$\textbf{0.80} \pm \textbf{0.21\%}$	0.96 ± 0.25%	$\textbf{1.1} \pm \textbf{0.29\%}$	$\textbf{1.1} \pm \textbf{0.29\%}$
(preliminary)	(0.28%)	(0.33%)	(0.35%)	(0.34%)
#WH(Inbb)	0.14	0.11	0.09	0.057
#ZH+WH	0.37	0.30	0.23	0.14
Acceptance	1.28 ±	$\textbf{1.51} \pm \textbf{0.39}$	1.84 ±	$\textbf{1.99} \pm \textbf{0.52}$
	0.33%	%	0.48%	%
Total Backgd	9.8 ± 3.2	$\textbf{10.3} \pm \textbf{3.4}$	$\textbf{10.8} \pm \textbf{3.6}$	$\textbf{10.8} \pm \textbf{3.6}$
		(expected)		
ZH Estimate	(6.6) pb	(5.9) pb	(5.2) pb	(5.2) pb
Prel (260pb ⁻¹)	(8.8) pb	(7.5) pb	(6.0) pb	(6.5) pb
ZH Est.+WH	(4.0) pb	(3.7) pb	(3.0) pb	(2.8) pb

Factor 2 since preliminary! (equiv to 4 times more lumi) using looser selection, tagging and misidentified WH 16

WH (e) : How limits are improved?

Here also a factor 2 has been gained compared to the preliminary results.(Muon channel has similar sensitivity)

Since the average WH/ZH missing sensitivity was a factor 3, these improvements reduce it to about 1.5

Gregorio Bernardi / Paris

Use Neural Net Event Selection

No Neural Net selection yet. Working group being formed, using single top expertise

In D0 we have gained factor 2 in (S/\sqrt{B}) in single top NN analysis

Example of CDF Run II Neural Net:

- NN analysis done for ZH→llbb
- → Improves S/\sqrt{B} by factor 1.5

Factor 1.8 used for 2003-HSWG is in reach, assumed that we will have it by summer.

5 How to Reach "Expected" Sensitivity: Step 2 For summer 2006, with 1 fb⁻¹ data, we expect: **WH/ZH** \rightarrow include WH \rightarrow WWW and Z \rightarrow I⁺I⁻ channel! (*1.3) **WH/ZH:** use Neural Net Tagger (*1.34*1.34) **WH/ZH:** use Neural Net Selection (*1.8) **WH/ZH:** use TrackCalJets \rightarrow mass resolution (*1.3) **WH(e):** include End-Cap calorimeter >(*1.2) **WH(** μ **):** improve QCD rejection \rightarrow loosen b-tag **WH** : include $W \rightarrow \tau v$ (*1.4)

Total for WH/ZH: 1.34 ² * 1.3 * 1.2 = 2.8 → another gain of sqrt(2.8)=1.7 in sensitivity (compare to the missing 1.5)

→we can reach the expected sensitivity by summer 06

Summary and Remarks

1

After the first round of analyses, both experiments are devoting more efforts to sensitivity optimization:

- **Combination (channels, but also 1-2 tags)**
- Include all channels (taus, WWW)
- **Neural Net selections**
- **b-tagging (neural-net, combination etc..)**
- Mass reconstruction (track cal jet)
- Our studies show, that, barring surprise D0 (and CDF?) could reach the expected sensitivity by summer 2006 (1fb⁻¹)
- If we are lucky, we could already say something on 115 GeV Higgs at the end of next year, else wait for 2007... but we do need to work coherently/critically.
- In the mean time, we will probably be able to progress beyond the expected sensitivity.