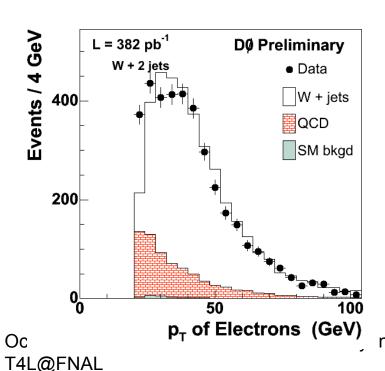
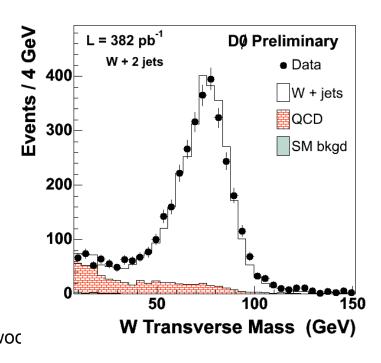

WH \rightarrow I(e, μ) ν b b-bar Searches At D0 experiment

Hyunwoo KIM for the D0 Collaboration
University of Texas Arlington
TeV4LHC, Oct 20 2005, @FNAL

Sesult in electron channel with 174 pb⁻¹ published

- In 2 b-jet mass distribution, in mass window, for 115 GeV Higgs signal
- 0 data, 0.05 expected Higgs, 1.07 background
- 95 % CL limits on WH, 11.0, 9.0, 9.1 and 12.2 pb for 105 to 135 GeV
- Wbb limit is 6.6 pb from 6 events with 4.4 total expectation


pdate with larger data set


- A New "preliminary" result released in May 2005
- New data set(382 pb⁻¹) includes entire previous set(174 pb⁻¹)
- Event selection starts with one electron, missing transverse energy and two jets
- Backgrounds considered include : t-tbar, WZ, single top, Wbb, W/Z+jets and multi-jet
- MC estimations use cross-sections normalized to MCFM NLO calculation
- Two jet multiplicity because of good S/N ratio after btagging: t-tbar and single top are biggest backgrounds

Event Selection I

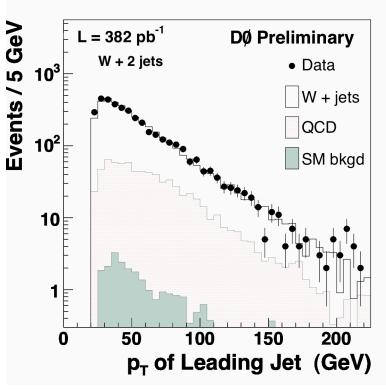
- An electron with p_T > 20 GeV in central region, veto 2nd lepton
- Shower shape cuts; EMF > 0.9, Isolation < 0.1 etc.
- Missing E_T > 25 GeV, all corrections to electrons and jets are propagated

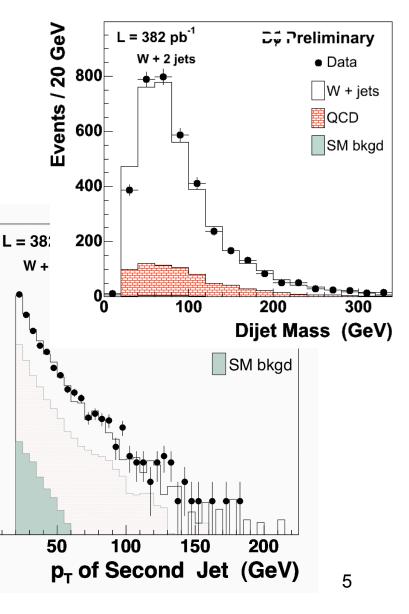
Event Selection II

Events / 5 GeV

10⁴

10³

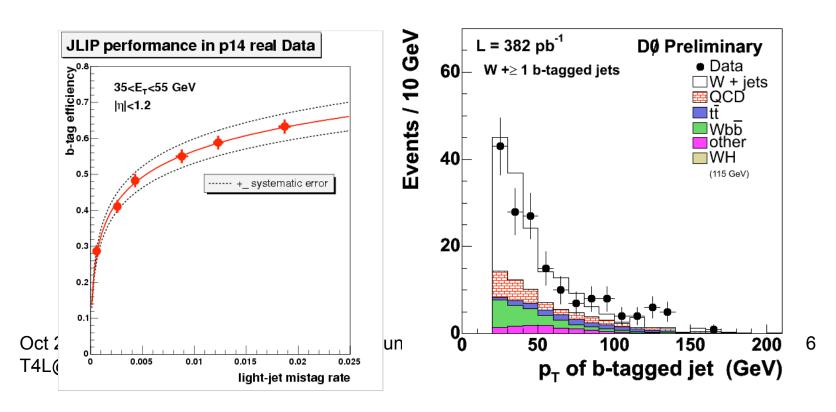

10²


10

1 ⊧

- Two jets with $E_T > 20$ GeV in $|\eta| < 2.5$
- Particle level energy scale correction
- Jets with electrons near rejected

Backgrounds other than W+jets small



T4L@FNAL

mpact parameter b-tagging

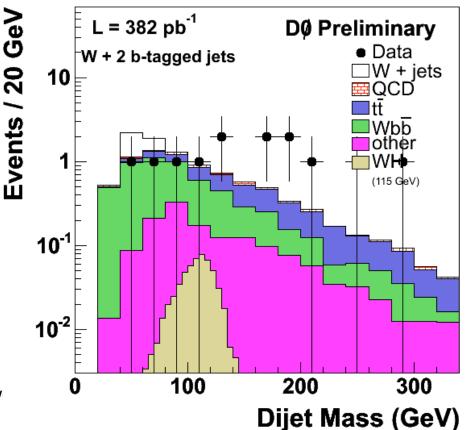
- A b-tagging method(JLIP) based on impact parameters of tracks
- Probability of jet-tracks to originate from the same vertex
- Non b-jet has a large probability and a b-jet small probability
- 50 % efficiency(b-jet) with 0.5 % mistag rate(light jet)
- Top, Wbb begin to show up(153 events with total expectation of 153.6)

Double b-tagging

- Double tag is needed to increase S/B ratio
- With single b-tagging, bkg contributions from W+jets, multijets, t-tbar much larger than processes not observed yet: Wbb, single-top and WH

• 13 events 10.2 ± 2.4 expected

Composition

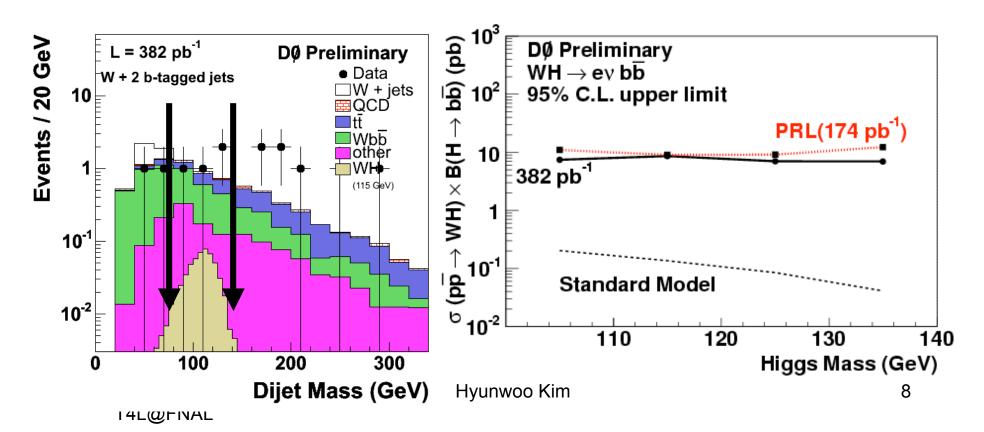

Wbb : 4.3 ± 1.0

Top : 3.4 ± 0.8

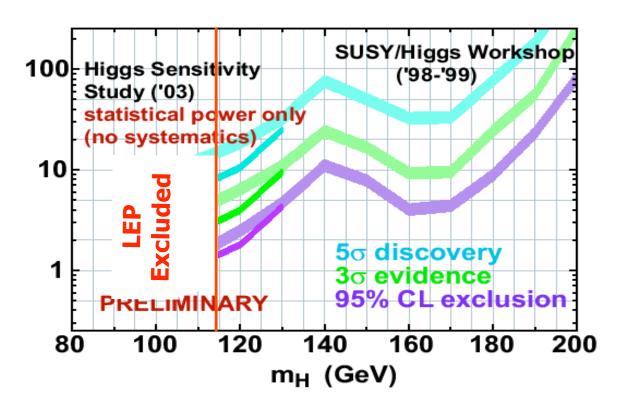
W or $Z + jets : 1.6 \pm 0.4$

Multijet : 0.4 ± 0.2

95 % C.L. upper limit on Wbb : 4.6 pb



Oct 20 05 T4L@FNAL Hyunw


WH: Mass Window

- Count in 85 to 135 GeV mass window
- 4 events observed with total expectation of 2.5 ± 0.6
- 95 % C.L. upper limit on WH: 6.9 pb to 8.6 pb for Higgs masses of 105 to 135 GeV(previous 9.0 pb to 12.2 pb)

Sensitivity Issues

We are not as sensitive as assumed in 2003 HSS WH in electron channel alone: short by a factor of 2.4 in terms of S/sqrt(B)

Oct 20 05 T4L@FNAL Hyunwoo Kim

Optimization in order

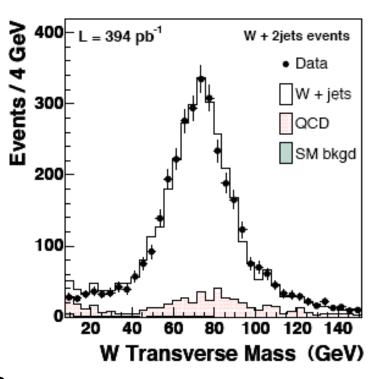
- Need to optimize analysis to increase sensitivity
- Refer to Gregorio Bernardi's talk(tomorrow) for details
- Loosen b-tagging (JLIP) cut
- Combine double-tag and single-tag sample
- Increase electron acceptance (Cracks in phi-modules)

Looser b-tagging and Combining single and double

- So far our final result has been based on double tag with JLIP cut value of < 0.7 %
- We found that 2.0 % is optimal point in terms of S/sqrt(B) for double tag
- If we combine results from single tag and double tag, we gain by about 40-50 % in terms of S/sqrt(B) or 20 % in terms of luminosity
- We are thinking about using different cut values for Single Tag(0.1% very tight) and Double Tag(2.0%) and combining results

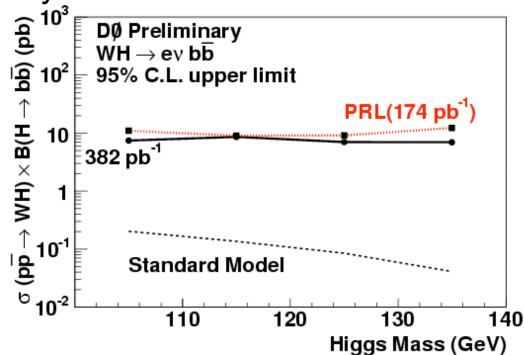
ncreasing electron acceptance

- Currently, in order to ensure full shower containment, we are not using electrons going into a "crack" in modules in phi and its vicinity
- But if we remove this constraint, we can have 15 % gain, without compromising energy measurement too much
- We need to get new efficiency correction factor because MC does not reproduce materials in that region(high efficiency in MC)


Improvement Estimation

	Preliminary(May05)	New analysis
	(115 GeV)	Under way
WH signal	0.23 % ± 0.03	0.46 % ± 0.08
acceptance	(0.12)	(0.24)
Total Bkg	2.37 ± 0.59	5.71 ± 1.46
S/sqrt(B)	0.08	0.19
Expected Limit	5.7 pb	4.1 pb

WH $\rightarrow \mu \nu$ bb status


- Use 394 pb⁻¹
- One muon with p_T > 20 GeV
- Same selection conditions for 2 jets and MET
- 4731 events with 4703 expectation before b-tagging
- This study is under way and we expect a sensitivity comparable to electron channel
- We will combine these two channels very soon

Summary

- WH in e nu bb channel was first D0 RunII Higgs search and published with 174 pb⁻¹ data in PRL
- Updated with 382 pb⁻¹ data
- WH limit 6.9 8.3 pb for Higgs of 105 to 135 GeV
- We hope to release a improved new result combined with muon channel very soon

Oct 20 05 T4L@FNAL