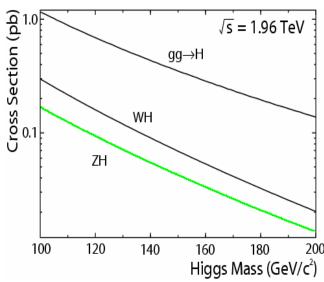
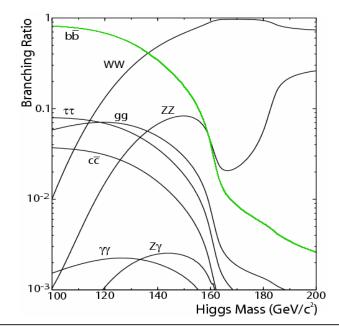


ZH->vvbb results from CDF


Viktor Veszpremi Purdue University, CDF Collaboration

Tev4LHC Workshop, Oct 20-22 2005, Fermilab

Higgs Production at the Tevatron

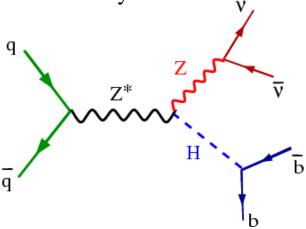


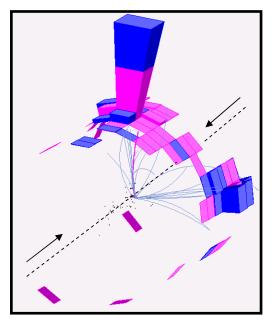
Production modes at Tevatron:

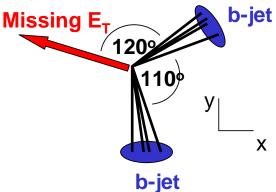
- Gluon fusion
 - Large cross section
- W/Z associated production
 - Smaller cross section, easier to trigger on the decay products of the vector boson

Decay modes:

- H⁰->bb for Higgs mass below 125 GeV
 - The most promising channel at Tevatron
 - Requires good b-jet tagging
- H⁰->WW for Higgs mass above 130 GeV



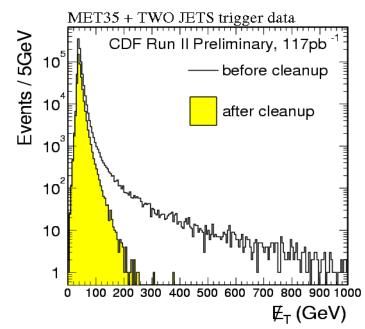

Select decay mode: Z -> v v, H ->b b



• This signature proved to be the most sensitive in the Run I analysis at CDF

- Signal has a distinctive topology
 - Large missing transverse energy
 - two jets (one is b-tagged)
- Trigger (MET35 + TWO JETS) on
 - Missing $E_T > 35 \text{ GeV}$
 - Two jets $E_T > 10 \text{ GeV}$

Origin of Missing E_T

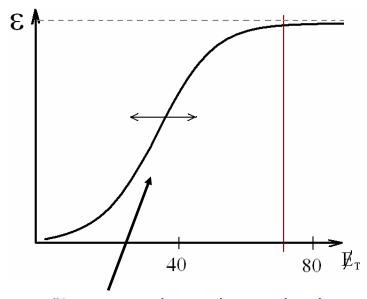


Intrinsic Missing E_T – related to physics

- Produced by neutrinos
- Missing E_T is usually not aligned to jets in the event

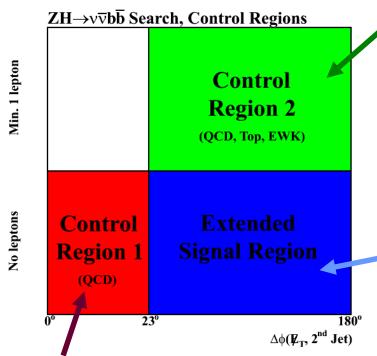
Fake Missing E_T – detector related

- Beam/detector effects
 - A set of quality cuts are applied to eliminate beam effects
- Imbalanced, mis-measured jets
 - The primary source of E_T in dijet events
 - Since the cross-section of QCD dijet production is large, most of the triggered events are like this
 - Makes QCD the main background


Missing ET before and after removal of beam and cosmic effects

Triggering on Missing E_T

- The trigger efficiency depends on whether the Missing E_T is fake or real
- Efficiency for calculating event weight for Monte Carlo simulation was obtained using an inclusive jet data sample
- To avoid large systematic error from the trigger, we cut at 70 GeV in the Missing E_T , where the efficiency is ~ 1
- Further trigger efficiency studies are needed taking into account the main source of the MET event by event


"Turn on" depends on whether it originates from a physical process (escaping neutrinos) or from detector effects (miss-measured jets)

Analysis Outline

We performed a blind analysis

Control Region 1 – QCD h.f.

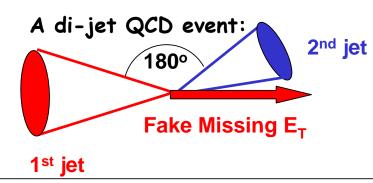
- Veto events with identified leptons
- Missing E_T and 2nd leading jet are parallel

Control Region 2 – EWK

- Require min. 1 lepton
- Missing E_T and 2nd leading jets are not parallel
- Optimized cuts are tested in this region before looking at the real data in the Signal Region

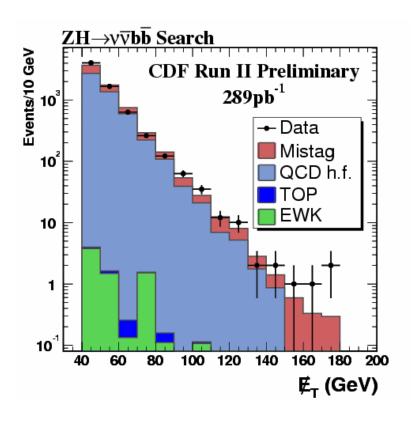
Extended Signal Region (no optimization)

- Veto events with leptons
- Missing E_T and 2^{nd} leading jet are not parallel
- Cut optimization is performed in this region based on Monte Carlo simulation before looking at the data


QCD Heavy Flavor Simulation

- Most of the triggered events are dijet events with fake Missing E_T
- After b-tagging, heavy flavor component is dominant
- Use Pythia to simulate it:
 - ~ 500 M events represent 1 fb⁻¹ data
 - events are b-filtered (6%),
 - only events with Missing $E_T > 15$ GeV are kept (32%)
 - few fb-1 data represents a great computational challenge
- Mistagged light flavor QCD is estimated from the data
- The simulation is normalized so that the sum of that and the estimated mistag is equal to the data in Control Region 1 with a 40 GeV MET threshold

QCD events also have a particular topology:


- jets are back-to-back
- Fake missing E_T points along the leading jet

ZH->vvbb Control Region

Events CDF Run II Preliminary $\mathbf{289pb}^{\text{-}1}$ 70 - Data 60<u>F</u> Mistag 50 QCD multi-jet TOP 40F **EWK** 30⊱ 20 10 100 200 300 400 500 60 M_{ii} (GeV) 600

ZH→v⊽bb̄ Search, Control Region 1

Control Region 1: sum of the simulated heavy flavor and the mistag compared to data after normalization

Dijet invariant mass in Control Region 1 after normalization

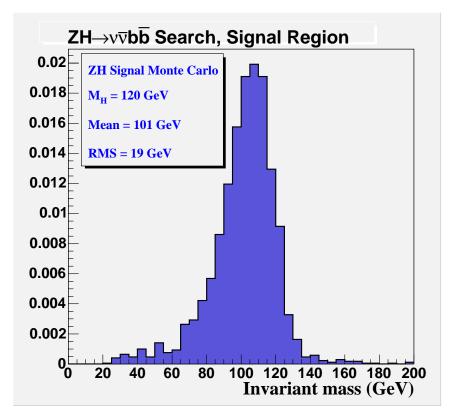
Cut Optimization

The following optimized cuts were developed on a benchmark signal MC sample $(M_h=120 \text{ GeV})$

Selection cut	ZH 120 288.9 pb ⁻¹	Acceptance (%)	S/sqrt(B)
Basic Cuts	0.205±0.0035	5.92 ±0.1	0.026
Dasic Cuts	0.205±0.0055	3.92 IU.1	0.020
$\Delta \varphi (1^{st} Jet, \mathbb{E}_T) > 0.8$	0.205 ±0.0035	5.92±0.1	0.027
H_T significance*	0.183±0.0033	5.23±0.095	0.031
$1^{st} JetE_T > 60 GeV$	0.161±0.0031	4.68±0.089	0.037
Di-jet mass cut	0.126±0.016	3.64±0.079	0.062

The last cut is on the di-jet mass. This is a "sliding" cut: a ±20 GeV mass window is applied to the data and Monte Carlo around the reconstructed Higgs mass peak

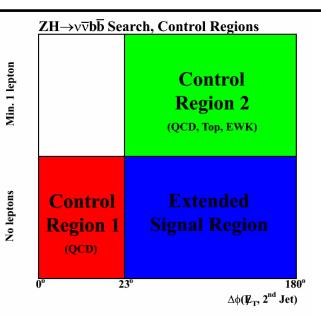
^{*} H_T significance is the significance of the Missing E_T calculated from the two leading jets with respect to the scalar sum of the E_T of the jets



Choosing ZH->vvbb Mass Windows

- Last cut is on the dijet invariant mass
- A window of +20 GeV and -20 GeV is set around each of the mean of the mass peaks
- Dijet mass resolution is ~17 %

Invariant M	s/\sqrt{b}	
min.	max.	
60	140	0.043
70	130	0.047
80	120	0.060
90	110	0.056


Cut Optimization

Expected number of events in the three regions

Before applying mass-window cut

Used L=289 pb⁻¹ data

Process	Control Region 1	Control Region 2	Signal Region
QCD multi-jet	9.5 ± 4.3	5.2 ± 3	2.6 ± 1.7
TOP	0.01 ± 0.002	8.9 ± 2.3	2.1 ± 0.4
Di-boson	0 ± 1.2	1.5 ± 0.3	1.1 ± 0.2
W + h.f.	0 ± 1.2	9.7 ± 3.5	3.7 ± 2.6
Z + h.f.	0 ± 0.18	1.1 ± 0.3	3.2 ± 1.2
Mistag	2.9 ± 0.4	11.9 ± 2.3	7.0 ± 1.0
Total Expected BCK	12.4 ± 4.6	38.3 ± 5.7	19.7 ± 3.5
Observed 16		47	19

Results

The top plot : di-jet invariant mass in Control Region 2 after optimization, before the mass-window cut

The bottom plot is the same in the Signal Region

For the 120 GeV Higgs mass we apply a 80-120 GeV window cut:

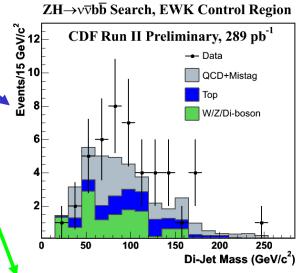
SM background prediction: 4.36 ± 1.02 events

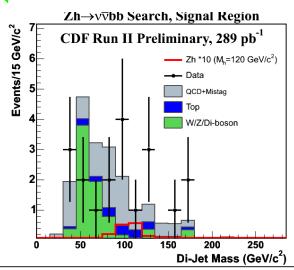
• QCD : 11.4%

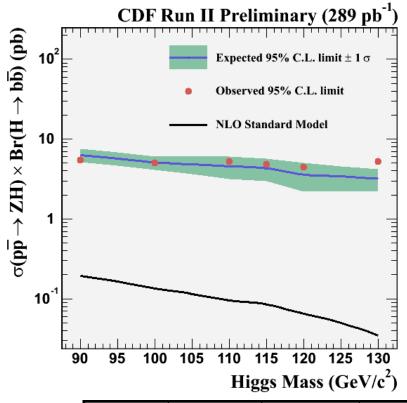
• Top : 20.5%

• EWK: 18.2%

• Light flavor mistag: 50%

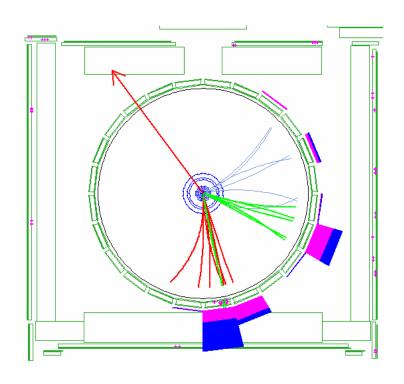

Observed: 6 events.

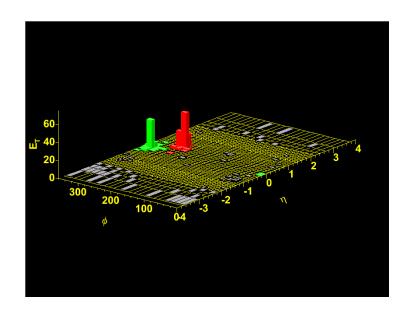

With a 95 % C.L. we expect the limit to be for the


$$\sigma(ZH) \cdot BR(b\overline{b}) < 3.6 \pm 1.4 pb$$

Observed limit:

$$\sigma(ZH) \cdot BR(b\overline{b}) < 4.5 pb$$


- Higgs mass dependence of the expected and observed limits
- Optimization was performed on a 120 GeV Higgs sample
- The largest systematic errors are the jet energy resolution (8%), luminosity (6%), b-tag efficiency (6%), and the statistical fluctuations


Mass (GeV)	Observed events	SM prediction	Higgs signal acceptance	Expected Limit (pb)	Observed Limit (pb)
90	6	7.18	0.45%	6.3 ± 1.2	5.4
100	7	7.07	0.55%	5.1 ± 1.0	5.0
110	7	5.9	0.64%	4.6 ± 1.4	5.2
115	7	5.9	0.67%	4.3 ± 1.4	4.8
120	6	4.36	0.73%	3.6 ± 1.4	4.5
130	8	4.11	0.77%	3.2 ± 1.0	5.2

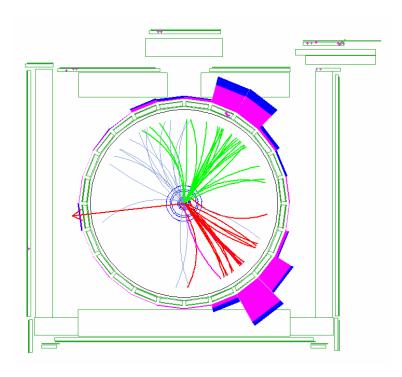
Candidate Event

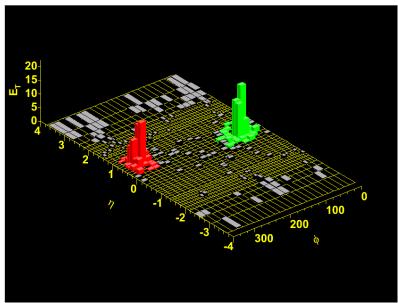
Two b-tagged jets

$$\operatorname{Jet}_{1} \operatorname{E}_{T} = 100.3 \operatorname{GeV}$$

$$\text{Jet}_2$$
 $\text{E}_T = 54.7 \text{ GeV}$

$$m_{jj} = 82 \text{ GeV}$$


Missing
$$E_T = 145 \text{ GeV}$$


Could be ZZ

Candidate Event

$$\text{Jet}_1 \quad \text{E}_T = 84.7 \text{ GeV}$$
 $\text{Jet}_2 \quad \text{E}_T = 71.9 \text{ GeV} - \text{Tagged}$

$$m_{jj} = 129 \text{ GeV}$$

Missing
$$E_T = 98 \text{ GeV}$$

Summary and Future Improvements

Challenges in the analysis:

- Missing E_T trigger efficiency requires better understanding
- Monte Carlo generation is time costly

Further improvements:

- Taking into account the WH channel when the lepton is missed
- Changing (to looser) lepton veto
 - increases WH acceptance
 - increased amount of data with no requirements on the muon system
- Better dijet mass resolution
- Improving b-tag efficiency
- Develop better selection methods (Neural Network?)