Discriminating between Charged Massive Stable Particles

David Milstead Stockholm University

Some motivation for stable, massive particles

Stable gluino sensitivity at the Tevatron

Distinguishing between sparticles using colour and charge

Models for CMSPs

SUSY examples

Particle	Colour	Scenario	
Gluino	octet	Split-SUSY	
Stop	triplet	GMSB	
		SUSY-5D	
Stau	colourless	GMSB	

- +universal extra dimension
- + new fermion theories
- + leptoquarks
- + Dirac monopoles
- +.....

Need a strategy to determine the quantum numbers of any heavy exotic particle.

Common CMSP Signatures

$$\frac{dE}{dx} = -K\frac{Z}{A}\frac{\rho}{\beta^{2}}\left(\ln\frac{2mc^{2}\beta^{2}E_{M}}{I^{2}(1-\beta^{2})} - 2\beta^{2}\right)$$

High ionisation energy loss

Slow time of flight To muon system (>20 ns)

Observables based on electric charge and mass

R-hadrons and their interactions

Hadronic bound states from meta-stable sparticles (R-hadron)

R-meson: $\tilde{g}qq$ $\tilde{q}q$

R-baryon: gqqq qqq

R-gluino ball: gg

Many approaches to modelling hadronic interactions:

H. Baer et al. – hep-ph/9806361, A. Mafi, S. Raby – hep-ph/991236

A. C. Kraan, hep.ph/0404001

$$\sigma(\widetilde{q},\widetilde{q}-p) - 1/M^2$$

The sparticle is a spectator valence quarks + 'brown' muck Interact

K.E._{quarks} =
$$(\gamma - 1)m_{qq} \approx 0.5 \text{ GeV}$$

Low energy hh scattering

Expected Scattering Behaviour

$$R^- + p \rightarrow S^+ + \pi^-$$

$$R^{-} + p \rightarrow S^{+} + \pi^{-}$$

$$S^{+} + \pi^{-} \not\rightarrow R^{-} + p$$

Prohibited by phase space and absence of π

$$R_{g}^{-} + p \rightarrow S_{g}^{+} + \pi^{-}$$

Gluino R-hadrons can flip charge

$$R_{\tilde{g}}^{-} + p \rightarrow S_{\tilde{g}}^{+} + \pi^{-}$$

$$R_{\tilde{t}}^{-} + p \not\rightarrow S_{\tilde{t}}^{+} + \pi^{-}$$

$$R_{\tilde{b}}^{-} + p \rightarrow S_{\tilde{b}}^{+} + \pi^{-}$$

Stop, anti-stop R-hadrons cannot

$$R_{\widetilde{b}}^- + p \rightarrow S_{\widetilde{b}}^+ + \pi^-$$

Sbottom R-hadrons can flip

$$R_{\overline{b}}^+ + n \rightarrow S_{\overline{b}}^- + \pi^+ + \pi^+$$
 Antisbottom can flip followed by annihilation

$$S_{\overline{b}}^- + p \rightarrow R_{\overline{b}}^+ + \pi^-$$

Nuclear Interaction Model A. Kraan (hep-ex/0404001) No explicit resonances.

Constant cross-section at all energies

Only u, d quarks

Only 2-2, 2-3 processes, distinguished by phase space

Geant 3

ž	R ⁺	R	R-
proton sasttering: 2→2 processes	$R^+p \rightarrow R^+p$ $R^+p \rightarrow S^++\pi^0$ $R^+p \rightarrow S^+\pi^+$	$R^0p \rightarrow R^0p$ $R^0p \rightarrow R^+n$ $R^0p \rightarrow S^{++}\pi^-$ $R^0p \rightarrow S^+\pi^0$ $R^0p \rightarrow S^0\pi^+$	$\begin{array}{c} R^-p \rightarrow R^-p \\ R^-p \rightarrow R^0n \\ R^-p \rightarrow S^+\pi^- \\ R^-p \rightarrow S^0\pi^0 \end{array}$
neutron scattering: 2-+2 processes	$R^{+}n \rightarrow R^{+}n$ $R^{+}n \rightarrow R^{0} + \mu$ $R^{+}n \rightarrow S^{++}\pi^{-}$ $R^{+}n \rightarrow S^{+}\pi^{0}$ $R^{+}n \rightarrow S^{0}\pi^{+}$	$R^0n \rightarrow R^0n$ $R^0n \rightarrow R^-p$ $R^0n \rightarrow S^+\pi^-$ $R^0n \rightarrow S^0\pi^0$ $R^0n \rightarrow S^-\pi^+$	$R^-n \to R^-n$ $R^-n \to R^0\pi^-$ $R^-n \to S^0\pi^-$ $R^0n \to S^-\pi^0$
proton seattering: 2-3 processes	$R^{+}p \rightarrow R^{+}p\pi^{0}$ $R^{0}p \rightarrow R^{+}n\pi^{+}$ $R^{+}p \rightarrow R^{0}p\pi^{+}$ $R^{+}p \rightarrow S^{+}+\pi^{0}\pi^{0}$ $R^{+}p \rightarrow S^{+}+\pi^{+}\pi^{-}$ $R^{+}p \rightarrow S^{+}\pi^{+}\pi^{0}$ $R^{+}p \rightarrow S^{0}\pi^{+}\pi^{+}$	$R^{0}p \rightarrow R^{0}p\pi^{0}$ $R^{0}p \rightarrow R^{0}n\pi^{+}$ $R^{0}p \rightarrow R^{0}n\pi^{+}$ $R^{0}p \rightarrow R^{+}p\pi^{-}$ $R^{0}p \rightarrow R^{+}n\pi^{0}$ $R^{0}p \rightarrow R^{+}n\pi^{0}$ $R^{0}p \rightarrow R^{+}\pi^{0}n^{-}$ $R^{0}p \rightarrow R^{+}\pi^{0}n^{-}$ $R^{0}p \rightarrow R^{+}\pi^{+}\pi^{-}$ $R^{0}p \rightarrow R^{0}n^{+}\pi^{0}$ $R^{0}p \rightarrow R^{-}n^{+}\pi^{+}$	$R^-p \rightarrow R^-p\pi^0$ $R^-p \rightarrow R^-n\pi^+$ $R^-p \rightarrow R^+n\pi^-$ $R^-p \rightarrow R^0p\pi^-$ $R^-p \rightarrow R^0p\pi^0$ $R^-p \rightarrow S^{++}\pi^-\pi^-$ $R^-p \rightarrow S^+\pi^0\pi^-$ $R^-p \rightarrow S^0\pi^0\pi^0$ $R^-p \rightarrow S^0\pi^+\pi^-$ $R^-p \rightarrow S^-\pi^+\pi^0$
neutron scattering: 2-3 processes	$R^{+}n \rightarrow R^{+}n\pi^{0}$ $R^{+}n \rightarrow R^{+}p\pi^{-}$ $R^{+}n \rightarrow R^{0}p\pi^{0}$ $R^{+}n \rightarrow R^{0}n\pi^{+}$ $R^{+}n \rightarrow R^{-}p\pi^{+}$ $R^{+}n \rightarrow S^{+}\pi^{0}\pi^{-}$ $R^{+}n \rightarrow S^{+}\pi^{0}\pi^{0}$ $R^{+}n \rightarrow S^{+}\pi^{+}\pi^{-}$ $R^{+}n \rightarrow S^{-}\pi^{+}\pi^{-}$ $R^{+}n \rightarrow S^{-}\pi^{+}\pi^{+}$	$H^{0}n \rightarrow H^{0}n\pi^{0}$ $H^{0}n \rightarrow H^{0}p\pi^{-}$ $H^{0}n \rightarrow H^{0}p\pi^{-}$ $H^{0}n \rightarrow H^{-}p\pi^{0}$ $H^{0}n \rightarrow H^{-}p\pi^{0}$ $H^{0}n \rightarrow S^{+}\pi^{-}\pi^{-}$ $H^{0}n \rightarrow S^{+}\pi^{-}\pi^{0}$ $H^{0}n \rightarrow S^{0}\pi^{0}\pi^{0}$ $H^{0}n \rightarrow S^{0}\pi^{+}\pi^{-}$ $H^{0}n \rightarrow S^{0}\pi^{+}\pi^{-}$	$\begin{array}{l} R^-n \rightarrow R^-n\pi^0 \\ R^-n \rightarrow R^-p\pi^- \\ R^-n \rightarrow R^0n\pi^- \\ R^-n \rightarrow S^0\pi^-\pi^0 \\ R^-n \rightarrow S^0\pi^-\pi^0 \\ R^-n \rightarrow S^-\pi^0\pi^0 \\ R^-n \rightarrow S^-\pi^+\pi^- \end{array}$

GEANT-3 Implementation for gluino (+ stop, sbottom) R-hadrons

Hadronising Sparticles

Sparticle hadronisation

- PYTHIA (string)
- HERWIG (cluster)

Open questions: R-hadron mass spectrum – cascade to neutrals $(R_{meson} - R_{gluinoball} < m_{\pi}?)$

: Fraction of neutrals for gluino R-hadrons

Probability of glueball formation $P_{gg}=0.1$ - neutral/total = 0.6

Uncertainties due to gluino constituent mass etc. expected to be small.

Set same R-meson and R-baryon masses for given sparticle.

Conversions of R-hadrons through D0 Calorimeter Use GEANT-3 with thickness $11\lambda_T(\pi)$

Stopping R-hadrons

Non-negligible stopping – perhaps look for off-beam R-hadron decays (A. Arvanitaki et al., hep.ph/0506242)

Gluinos at the Tevatron

Cross-section (pb)

Split-SUSY scenario, m_s=10⁶ GeV -> stable gluino

Expect - 1000 gluino pairs at 300 GeV for 1fb⁻¹

R-hadrons at the Tevatron

Use PYTHIA + model for R-hadron Scattering

Smear with resolution of by D0 CFT and muon tracking chambers.

Smear to 'achieve' 25-30% 10-2 charge misidentification with muon chamber alone

Expected Properties of 100 GeV gluino R-hadrons

Signed P_T (outer) / Signed P_T (inner)

exchange

exchange

exchange

exchange

Expected number of R-hadron tracks and flippers for gluino pair production

Discriminate with Event Topologies

Rates of different event classes

2 combined tracks

Relative rates of different processes offer discrimination

Summary

The discovery of new stable, massive charged particles would be of fundamental significance.

The absence of such particles is of fundamental significance in developing any theory beyond the SM.

Charge exchange in hadronic interactions could allow the discovery of R-hadrons and the quantification of the sparticle colour.

Charge exchange in hadronic interactions may have kept R-hadrons hidden in previous searches.

Tevatron offers chance of discovery and systematic study ahead of LHC

Split SUSY

Abandon the Hierarchy Problem! Arkani-Hamed, et al hep-ph/0409232

Supersymmetry breaking occurs at high scale $M_s >> 1000 \text{ TeV}$ Scalars have masses at this scale – Higgs light Fermions light

Some nice theoretical features of Split SUSY

Long proton lifetime FCNC limits $M_s > 100 \text{ TeV}$ EDM limit $M_s > 1000 \text{ TeV}$

Unification of Coupling

Dark matter candidate – neutralino?

One nice experimental feature of Split SUSY

Heavy squark, light gluino -> (meta)stable gluino

Searching for R-hadrons in a generic detector!

Ionisation

Time of flight

Hadronic Interactions