

Talk #2

Rick Field University of Florida

Tel4HC

New CDF Run 2 results ($\mathcal{L} = 385 \text{ pb}^{-1}$) :

- **Two Classes of Events: "Leading Jet" and "Back-to-Back".**
- **Two "Transverse" regions: "transMAX", "transMIN", "transDIF".**
- Data Corrected to the Particle Level: unlike our previous CDF Run 2 "underlying event" analysis which used JetClu to define "jets" and compared uncorrected data with the QCD Monte-Carlo models after detector simulation, this analysis uses the MidPoint jet algorithm and corrects the observables to the particle level. The corrected observables are then compared with the QCD Monde-Carlo models at the particle level.
- ➡ For the 1st time we study the energy density in the "transverse" region.

• Look at charged particle and calorimeter tower correlations in the azimuthal angle $\Delta \phi$ relative to the leading calorimeter jet (MidPoint, R = 0.7, $f_{merge} = 0.75$, $|\eta| < 2$).

• Define $|\Delta \phi| < 60^{\circ}$ as "Toward", $60^{\circ} < -\Delta \phi < 120^{\circ}$ and $60^{\circ} < \Delta \phi < 120^{\circ}$ as "Transverse 1" and "Transverse 2", and $|\Delta \phi| > 120^{\circ}$ as "Away". Each of the two "transverse" regions have area $\Delta \eta \Delta \phi = 2 \times 60^{\circ} = 4 \pi / 6$. The overall "transverse" region is the sum of the two transverse regions ($\Delta \eta \Delta \phi = 2 \times 120^{\circ} = 4 \pi / 3$).

TeV4LHC - Fermilab October 21, 2005

- Look at the "transverse" region as defined by the leading jet (|η| < 2) or by the leading two jets (|η| < 2). "Back-to-Back" events are selected to have at least two jets with Jet#1 and Jet#2 nearly "back-to-back" (Δφ₁₂ > 150°) with almost equal transverse momenta (P_T(jet#2)/P_T(jet#1) > 0.8) and P_T(jet#3) < 15 GeV/c.</p>
- Shows the Δφ dependence of the charged particle density, dN_{chg}/dηdφ, for charged particles in the range p_T > 0.5 GeV/c and |η| < 1 relative to jet#1 (rotated to 270°) for 30 < E_T(jet#1) < 70 GeV for "Leading Jet" and "Back-to-Back" events.</p>

"Transverse" Observables Particle and Detector Level

Observable	Particle Level	Detector Level
dNchg/dηdφ	Number of charged particles per unit η-φ (p _T > 0.5 GeV/c, η < 1)	Number of "good" charged tracks per unit η-φ (p _T > 0.5 GeV/c, η < 1)
dPTsum/dŋdø	Scalar p _T sum of charged particles per unit η-φ (p _T > 0.5 GeV/c, η < 1)	Scalar p _T sum of "good" charged tracks per unit η-φ (p _T > 0.5 GeV/c, η < 1)
<p<sub>T></p<sub>	Average p _T of charged particles (p _T > 0.5 GeV/c, η < 1)	Average p _T of "good" charged tracks (p _T > 0.5 GeV/c, η < 1)
PTmax	Maximum p _T charged particle (p _T > 0.5 GeV/c, η < 1) PTmax = 0 for no charged particle	Maximum p _T "good" charged tracks (p _T > 0.5 GeV/c, η < 1) PTmax = 0 for no "good" charged track
dETsum/dŋdø	Scalar E _T sum of all particles per unit η-φ (all p _T , η < 1)	Scalar E _T sum of all calorimeter towers per unit η-φ (E _T > 0.1 GeV, η < 1)
PTsum/ETsum	$\begin{array}{l} Scalar \ p_T \ sum \ of \ charged \\ particles \\ (p_T > 0.5 \ GeV/c, \ \eta < 1) \\ divided \ by \ the \ scalar \ E_T \ sum \ of \\ all \ particles \ (all \ p_T, \ \eta < 1) \end{array}$	Scalar p_T sum of "good" charged tracks $(p_T > 0.5 \text{ GeV/c}, \eta < 1)$ divided by the scalar E_T sum of calorimeter towers ($E_T > 0.1 \text{ GeV}, \eta < 1$)

- Use the leading jet to define the MAX and MIN "transverse" regions on an event-byevent basis with MAX (MIN) having the largest (smallest) charged PTsum density.
- Shows the "transDIF" = MAX-MIN charge PTsum density, dPTsum/dηdφ, for p_T > 0.5 GeV/c, |η| < 1 versus P_T(jet#1) for "Leading Jet" and "Back-to-Back" events.

Rick Field - Florida/CDF

Page 7

Shows the charged PTsum density, dPT_{sum}/d η d ϕ , in the "transMAX" and "transMIN" region (p_T > 0.5 GeV/c, $|\eta| < 1$) versus P_T(jet#1) for "Leading Jet" and "Back-to-Back" events.

Aw

Jet #2 Direction

Compares the (*corrected*) data with PYTHIA Tune A (with MPI) and HERWIG (without MPI) at the particle level.

TeV4LHC - Fermilab October 21, 2005

"Away"

particle level. TeV4LHC - Fermilab

October 21, 2005

Rick Field - Florida/CDF

Page 10

PT(jet#1) (GeV/c)

- Use the leading jet to define the MAX and MIN "transverse" regions on an event-byevent basis with MAX (MIN) having the largest (smallest) charged PTsum density.
- Shows the "transDIF" = MAX-MIN ETsum density, dET_{sum}/dηdφ, for all particles (|η| < 1) versus P_T(jet#1) for "Leading Jet" and "Back-to-Back" events.

the "transverse" region ($p_T > 0.5$ GeV/c, $|\eta| < 1$) versus P_T (jet#1) for "Leading Jet" and "Back-to-Back" events.

Compares the (corrected) data with PYTHIA Tune A (with MPI) and HERWIG and a tuned version of JIMMY (with MPI, PTJIM = 3.25 GeV/c) at the particle level.

TeV4LHC - Fermilab October 21, 2005

Particle Level Data: CDF has new data on the "underlying event" that is corrected to the particle level so that it can be used to tune the QCD Monte-Carlo models without requiring CDF detector simulation!

➡ Interesting Physics: We see interesting dependence of the "underlying event" on the transverse momentum of the leading jet (*i.e.* the Q² of the hard scattering). For the "leading jet" case the "transMAX" densities rise with increasing P_T(jet#1), while for the "back-to-back" case they fall. The rise in the "leading jet" case is due to hard initial and final-state radiation, which has been suppressed in the "back-to-back" events. The "back-to-back" data show a decrease in the "transMIN" densities with increasing P_T(jet#1) which is very interesting.

 PYTHIA Tune A does not produce enough energy in the "underlying event"! JIMMY 325 (PTJIM = 3.25 GeV/c) fits the energy in the "underlying event" but does so by producing too many particles (*i.e.* it is too soft).

We are making good progress in understanding and modeling the "underlying event". However, we do not yet have a perfect fit to all the features of the "underlying event"!

TeV4LHC - Fermilab October 21, 2005

Analyses using 1fb⁻¹ of data by Winter 2006!

TeV4LHC - Fermilab October 21, 2005