W Mass Measurement

Experience at CDF

Eessons for the

Chris Hays Duke University

> TeV4LHC Workshop 10/21/05

CDF Run 2 Uncertainties

C. Hays, Duke University, TeV4LHC

CDF Event Generation and Simulation

Precision of few parts in 10⁴ requires detailed model of detector interactions Muons: dE/dx energy loss in silicon multiple Coulomb scattering track resolutions -- effects of constraining to beam This talk

Electrons: bremsstrahlung cross section, y spectrum (E: ~0.5 - 50 GeV) / conversion cross sections, y spectrum (E: ~0.01 - 50 GeV) calorimeter response energy loss in solenoid, longitudinal leakage

Some effects must be determined with data: Tracker alignment Calorimeter nonlinearity

Theory: See W/Z production theory talk C. Hays, Duke University, TeV4LHC

CDF Muon Momentum Calibration

Central Outer Tracker used to determine momentum

- * 96 measurement layers, each with resolution ~140 μm
- * $\delta p_T / p_T \sim 0.15\% p_T (2.4 \text{ GeV for } p_T = 40 \text{ GeV})$
- * Constrain tracks to beam line to improve resolution

Strategy:

* Understand tracker nonuniformities

Determine alignment of measurement wires

× beam line

* Calibrate momentum scale with high-statistics resonances J/ψ :

Very high statistics, can study scale as function of mean curvature

Low momentum tracks require detailed understanding of energy loss Y(1s):

Prompt decays allow test of beam constraint

COT Alignment

Tracker uniformity important for W mass measurement Muon chamber fiducial acceptance highly non-uniform:

Track momentum non-uniformity could affect calibration

- * difference in W vs J/ψ fiduciality: bias in W mass fit
- * difference in muon vs electron fiduciality: $W \rightarrow ev$ vs $W \rightarrow \mu v$ differences

COT Endplate Alignment

8 "superlayers" of 12 wires each

Requires cell-to-cell alignment

Endplate cell displacement model

* Cell tilts, azimuthal shifts

* Separately fit shifts for each endplate

COT Endplate Alignment

Determine cell tilts, shifts using cosmic data

* Fit both legs as a single "dicosmic"

* Use hit residuals to determine displacement

Component of cell shifts symmetric between endplates

* \pm ~100 µm variations reduced to <10 µm

COT Wire Alignment

Wires have sag, electrostatic deflection between endplates

- * Start with theoretical calculations
- * Constrain other deflections using difference in parameters of two cosmic

COT Alignment

Final correction using difference in E/p from e^+ and e^-

 * Alignment uncertainty taken to be difference in mass fits before and after final E/p-based correction : ~10 MeV/c²

CDF Muon Momentum Calibration

Set momentum scale using J/ψ and upsilon decays to muons

C. Hays, Duke University, TeV4LHC

CDF Muon Momentum Calibration

Momentum scale has low systematic uncertainty:

Tracker is a linear device -- can use low momentum particles to set scale Alignment uncertainties are indirect:

Arise only through fiducial differences between calibration and measurement samples

Direct effects of misalignments:

delta curvature = a + b curvature + c curvature² + d curvature³

a term cancels with charge symmetry

b term is momentum scale

c term cancels with charge symmetry

d term goes to zero at high momentum

Other factors:

* *Material understanding important for low-momentum resonances* dE/dx energy loss, multiple scattering: affect scale extrapolation to high momentum and inferred hit resolution, respectively

* Beam constraint powerful, simulation needs accurate hit resolution and beam size C. Hays, Duke University, TeV4LHC 11

CDF Electron Calibration

Use calibrated tracks to set calorimeter electromagnetic energy scale

E/p peak in $W \rightarrow ev$ events determines scale

High statistics, similar energy distribution to measurement sample

CDF Electron Calibration

Electron radiation in material affects position of *E/p* peak * Significant amount of passive material (silicon) in CDF detector

Cross Checks

* No statistically significant difference

C. Hays, Duke University, TeV4LHC (after incorporating wire alignment)

events / 0.5 GeV

Summary

Muon momentum calibration cleaner than electron calibration

- * Minimal dependence on calorimeter (identification)
- * Small energy loss and multiple scattering corrections for W's
- * Tracker can be calibrated with any high statistics sample

Important aspects to understand

- * Tracker alignment
- * Tracker material
- * Effect of beam constraint (if used)