# The Top Mass Report

F. Canelli, D. Glenzinski, U.-K. Yang (UCLA) (Fermilab) (UChicago) Fourth Tev4LHC Workshop 21-October-2005

### **Introduction**

- Basic outline
  - Why is this measurement interesting?
  - How is it done at the Tevatron?
  - What are the Tevatron results?
  - What do we expect the Tevatron results to be?
  - How is it done at the LHC?
  - What are the LHC expectations?
  - What are the outstanding issues/concerns?
- Main missing piece of information is some detailed information about LHC plans

#### **Status**



# <u>The Fit</u> (all quantities in GeV/c<sup>2</sup>)

- JES: 2.0
  - aJES: 0.3
  - **bJES**: 0.7
  - **cJES**: 1.0
  - **dJES**: 0.01
  - **iJES**: 1.4
  - rJES: 0.8
- Signal : 0.9
- Bgd: 0.9
- UN/MI: 0.3
- Fit: 0.3
- MC: 0.2
- Statistical: 1.7

**Total Systematic: 2.4** 

#### → iJES scales with statistics

### **Details: Error Classes**

- JES
  - aJES: D0 Run-II e/h calibration
  - bJES: JES issues specific to b-jets
  - cJES: fragmentation and OOC showering
  - dJES: correlated w/i experiment but not Runl&II
  - − iJES: in-situ calibration from W $\rightarrow$ jj
  - rJES: remaining JES (e.g. relative response, MI, UE, etc.)
- Signal : signal modeling (ISR,FSR,PDF,NLO)
- Bgd: QCD fraction, Q<sup>2</sup> scale
- UN/MI: D0 Run-I Uranium noise and MI
- Fit: fit method, finite MC stats
- MC: Pythia vs Herwig (vs ISAJET)
- Statistical: limited data statistics

→ JES, Sgnl, and Bkgnd Modeling will limit Tev  $\Delta M_{top}$ 

## **Correlations**

- Uncorrelated: Stat, Fit, iJES
- Correlated across all measures
  - in same experiment and run: aJES, dJES
  - in same experiment: rJES, UN/MI
  - in same channel: Bgd
  - everywhere: Signal, bJES, cJES, MC
- Correlation taken to be 0 or 100%
  - Requires more work to determine more precisely
  - CDF/D0/Theory workshop (11Oct) to initiate dialogue and begin ironing-out details
  - Tev/LHC correlations will also be important (this workshop is initiating that dialogue)

- I. Introduction
- II. Theory Overview
- III. Top Mass Determination at the Tevatron
  - A. Methods
    - 1. Template
    - 2. Matrix Element
    - 3. Kinematic
  - B. Results
  - C. Combination
    - 1. Method
    - 2. Limitations
    - 3. Outstanding Issues

III. Top Mass Determination at the Tevatron

- D. Systematic Uncertainties
  - 1. Jet Energy Scale
    - a. determination
    - b. uncertainties
    - c. limitations
  - 2. Signal Modeling
    - a. ISR/FSR
    - b. PDF
    - c. NLO
    - d. Q<sup>2</sup> scale
  - 3. Background Modeling
    - a. normalization
    - b. shape
  - 4. Miscelaneous

III. Top Mass Determination at the Tevatron

E. Extrapolations

. . .

- 1. What we learned from Run 1
- 2. What we expect from Run 2
- F. Using Mtop to look for New Physics
  - 1. Comparison across channels
  - 2. Differential distributions, dM/dX
- IV. Top Mass Determination at the LHC
  - A. Methods
  - B. Systematic Uncertainties
  - C. Expectations

IV. Top Mass Determination at the LHC

- D. Outstanding Issues
  - 1. Issues for LHC to address
  - 2. Issues for Tevatron to address
  - 3. Issues for B-factories to address
  - 4. Issues for HERA to address
  - 5. Issues for Theorists to address

V. Conclusions

. . .

#### <u>Next</u>

- We will need to identify people to write the parts I. IV.C (today)
- We need some detailed input from the LHC experiments (e.g. internal notes)
- After the two experimental sections are written, we should arrange an informal meeting to discuss IV.D and V. (in late December or early January?)



#### The Fit

|                          |         | Published Run-I |         |                  |                     |                 | Preliminary Run-2            |         |         |         |
|--------------------------|---------|-----------------|---------|------------------|---------------------|-----------------|------------------------------|---------|---------|---------|
|                          |         | C1(HAD)         | C1(LJT) | C1(DIL)          | D1(LJT)             | D1(DIL)         | C2(LJT)                      | C2(LJT) | C2(DIL) | D2(LJT) |
| Correlation coefficients | C1(HAD) | 1               |         |                  |                     |                 | $\underline{\hspace{1.5cm}}$ |         |         |         |
|                          | C1(LJT) | 0.32            | 1       |                  |                     |                 | Split by JES determination   |         |         |         |
|                          | C1(DIL) | 0.19            | 0.29    | 1                |                     |                 |                              |         |         |         |
|                          | D1(LJT) | 0.14            | 0.26    | 0.15             | 1                   |                 |                              |         |         |         |
|                          | D1(DIL) | 0.07            | 0.11    | 0.08             | 0.16                | 1               |                              |         |         |         |
|                          | C2(LJT) | 0.04            | 0.12    | 0.06             | 0.10                | 0.03            | 1                            |         |         |         |
|                          | C2(LJT) | 0.35            | 0.54    | 0.29             | 0.29                | 0.11            | 0.45                         | 1       |         |         |
|                          | C2(DIL) | 0.19            | 0.28    | 0.18             | 0.17                | 0.10            | 0.06                         | 0.30    | 1       |         |
|                          | D2(LJT) | 0.02            | 0.07    | 0.23             | 0.07                | 0.02            | 0.07                         | 0.08    | 0.03    | 1       |
|                          |         |                 | Mt<br>χ | = 172<br>²/dof = | .7 +/- ;<br>= 6.5 / | 2.9 Go<br>7 (49 | eV/c²<br>9%)                 |         |         |         |
|                          |         | C1(HAD)         | C1(LJT) | C1(DIL)          | D1(LJT)             | D1(DIL)         | C2(LJT)                      | C2(LJT) | C2(DIL) | D2(LJT) |

Pull: +1.19 +0.51 -0.48 +1.67 -0.34 +0.18 +0.24 -1.11 -0.86 Weight: +1% -0.2% +1% +19% +2% +36% +8% +33%

#### Error Classes: Jet Energy Scale Uncertainties

- Intricate because
  - CDF and D0 employ different philosophies for determining their JES
  - Within each there is a mix of modeling uncertainties (ie. theory) and simulation uncertainties (ie. detector description)
  - Run 1 and Run 2 not exactly the same
- Tricky to precisely determine because
  - The modeling and simulation uncertainties not always easy to untangle
  - We lack an ideal control sample (ie. high statistics, high purity, well measured, well modeled)
  - There is some overlap with "Signal" category (e.g. Out-of-Cone ~ FSR)

#### Error Classes: Signal Modeling Uncertainties

- Includes ISR, FSR, PDF, and NLO related uncertainties
- Important because
  - Correlated among all measurements
  - Will also be correlated with LHC measurements
  - Expected to be among dominant in future
- Tricky to precisely determine because
  - The above categories don't cleanly separate
  - Difficult to specify "reasonable" modeling variations in order to quantify related systematic
  - Few good control samples in which to use data to limit modeling variations
- CDF and D0 employ different philosophies/methods

#### Error Classes: Other Uncertainties

- Background Related
  - Dominated by modeling uncertainties which affect shape of fitted mass distribution (e.g. Q<sup>2</sup> scale)
  - Many of the "Signal" comments apply here as well
  - Could become a dominant contribution
- Fit Related
  - Presently treated as uncorrelated... can this last?
- Statistics Related
  - soon to be small (yeah Tevatron!)
  - LJT :  $\Delta$ (stat) ~  $\Delta$ (syst) already
  - DIL :  $\Delta$ (stat) ~  $\Delta$ (syst) at 2 fb<sup>-1</sup>
  - HAD : anticipate similar to DIL

#### The Measurements

|        |         | Run-I   | Preliminary Run-2 |         |         |         |         |         |         |
|--------|---------|---------|-------------------|---------|---------|---------|---------|---------|---------|
|        | C1(HAD) | C1(LJT) | C1(DIL)           | D1(LJT) | D1(DIL) | C2(LJT) | C2(LJT) | C2(DIL) | D2(LJT) |
| Mtop   | 186.0   | 176.1   | 167.4             | 180.1   | 168.4   | 17;     | 3.5     | 165.5   | 169.5   |
| Stat   | 10.0    | 5.1     | 10.3              | 3.6     | 12.3    | 2.7     |         | 6.3     | 3.0     |
| iJES   | 0.0     | 0.0     | 0.0               | 0.0     | 0.0     | 4.2     | 0.0     | 0.0     | 3.3     |
| aJES   | 0.0     | 0.0     | 0.0               | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.9     |
| bJES   | 0.6     | 0.6     | 0.8               | 0.7     | 0.7     | 0.6     | 0.6     | 0.8     | 0.7     |
| cJES   | 3.0     | 2.7     | 2.6               | 2.0     | 2.0     | 0.0     | 2.0     | 2.2     | 0.0     |
| dJES   | 0.3     | 0.7     | 0.6               | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
| rJES   | 4.0     | 3.4     | 2.7               | 2.5     | 1.1     | 0.0     | 2.3     | 1.4     | 0.0     |
| Signal | 1.8     | 2.6     | 2.8               | 1.1     | 1.8     |         | 1.1     | 1.5     | 0.3     |
| MC     | 0.8     | 0.1     | 0.6               | 0.0     | 0.0     | 0.2     |         | 0.8     | 0.0     |
| UN/MI  | 0.0     | 0.0     | 0.0               | 1.3     | 1.3     |         | 0.0     | 0.0     | 0.0     |
| Bgd    | 1.7     | 1.3     | 0.3               | 1.0     | 1.1     | 1.2     |         | 1.6     | 0.7     |
| Fit    | 0.6     | 0.0     | 0.7               | 0.6     | 1.1     | 0.6     |         | 0.6     | 0.6     |
| Syst   | 5.7     | 5.3     | 4.9               | 3.9     | 3.6     | 4.6     | 3.5     | 3.6     | 3.6     |
| Total  | 11.5    | 7.3     | 11.4              | 5.3     | 12.8    | 5.3     | 4.4     | 7.3     | 4.7     |

(all quantities in GeV/c<sup>2</sup>) (original authors consulted in every case) Split by JES determination

Extrapolations: What can we expect?

- Considered three scenarios
  - "Lazy" == only improvement is from additional stats
  - "Proactive" == additionally assume some progress on systematics related to JES (3→2), and modeling (e.g. for LJT non-JES syst 1.5→1.0 GeV/c<sup>2</sup>)
  - "Proactive++" == same as Proactive + D0(R2-DIL) + D0(R2-HAD) + CDF(R2-HAD) (assumed these look like CDF(R2-DIL))
- Take as inputs present analyses in world average and project to larger datasets (1, 2, 5, & 8 fb<sup>-1</sup>)

- use *expected* stat uncertainty in projections

| <b>Extrapolations:</b> Projections for $\Delta M_{top}$ in GeV/c <sup>2</sup> |                    |                                                   |                                                   |                   |                                                          |  |  |  |
|-------------------------------------------------------------------------------|--------------------|---------------------------------------------------|---------------------------------------------------|-------------------|----------------------------------------------------------|--|--|--|
|                                                                               |                    | Lazy                                              | ProAct                                            | ProAct++          |                                                          |  |  |  |
|                                                                               |                    | 1.15<br>0.76<br>0.84                              |                                                   | Bkand             | JES<br>Signal                                            |  |  |  |
|                                                                               | 1 fb <sup>-1</sup> | 0.42<br>1.9<br>1.2<br>2.2                         |                                                   | g                 | Other<br><mark>Syst</mark><br>Stat<br>Total              |  |  |  |
|                                                                               | 2 fb <sup>-1</sup> | 1.9                                               | 1.6                                               | 1.6               | Total                                                    |  |  |  |
|                                                                               | 5 fb <sup>-1</sup> | 1.6                                               | 1.4                                               | 1.3               | Total                                                    |  |  |  |
|                                                                               | 8 fb <sup>-1</sup> | 0.98<br>0.63<br>0.79<br>0.46<br>1.5<br>0.5<br>1.6 | 0.85<br>0.40<br>0.53<br>0.48<br>1.2<br>0.5<br>1.3 | 1.2<br>0.4<br>1.2 | JES<br>Signal<br>Bkgnd<br>Other<br>Syst<br>Stat<br>Total |  |  |  |