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initial statement

We would not have discussions like this one,

if we were only using the k⊥ algorithm!!
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Two Cone Jet Algorithms in Run II

Run II Workshop had proposed the infrared-safe Midpoint Cone Algorithm:

Iterative cone algorithm, using midpoints between jets as additional seeds
three parameters: Rcone (jet cone), foverlap, pT min (fractional energy in overlap treatment)

use every particle as seed:
– seed specifies cone axis / draw cone with Rcone around cone axis
– define proto-jet fourvector from particle four-vectors (in E-Scheme)
– use proto-jet axis as new cone axis
– iterate until jet axis = cone axis

now use all midpoints between pairs of jets as additional seeds
⇒ repeat iterative procedure

Overlap treatment: (only for jets with pT > pT min)
– if a jet shares more than a fraction foverlap of it’s pT with a higher pT jet → merge jets
– if the fractional overlapping pT is below foverlap → split jets

comments
– usually: jet axis = cone axis — not when overlap treatment is used
– jets are basically defined by iterative procedure – overlap treatment is an exception

=⇒ Midpoint Algorithm is used by DØ
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The Discovery

CDF saw that the midpoint cone algorithm can leave some towers unclustered (“dark towers”)

Jet Algorithms for Run II

The first interesting problem with the Midpoint Algorithm...

Midpoint & Seedless: Significant amounts of energy not collected into any jet!

Jay R. Dittmann, Baylor U. TeV4LHC Workshop – QCD Session December 1, 2004 17
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Feature of Midpoint Cone Algorithm

energy density in an event
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Feature of Midpoint Cone Algorithm

energy density in an event

iterative cone algo ...
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Feature of Midpoint Cone Algorithm

energy density in an event

iterative cone algo ...
finds maximum

but no stable solution
for 2nd local maximum
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Feature of Midpoint Cone Algorithm

energy density in an event

iterative cone algo ...
finds maximum

but no stable solution
for 2nd local maximum

smaller cone finds both!
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Solution: CDF “searchcone algorithm”

solution proposed: S.D. Ellis, J. Huston, M. Tonnesmann, hep-ph/0111434

introduce smaller “search cone” in iterative procedure to define jet direction
⇒ stable jet solutions can be closer

once a stable solution is found, use the full cone radius to define the jet
⇒ consequence: jet axis 6= cone axis

“midpoint step” uses full cone radius (otherwise not infrared-safe)
(this is not correctly described in the first CDF Run II jet publication!! hep-ex/0505013)

Since initial stable solutions can be closer, overlap treatment is more often needed to define
the final jet configuration → overlap treament becomes a standard-procedure

overlap treatment may merge many nearby jets
⇒ this results in merged jets with huge spacial extension (CDF: “fat jets”)
→ way out: increase foverlap parameter from 0.5 to 0.75
⇒ largely overlapping jets are still counted separately

=⇒ Searchcone Algorithm is used by CDF (confusingly also called “Midpoint Algorithm”)
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The Situation

... as before in Run I:

CDF and DØ are using different jet algorithms!!!!

obvious difference: clustering of “dark towers”
(not essential for QCD jets – see talk by Zdenek Hubacek at the TeV4LHC CERN meeting)

this talk: try to compare properties of the algorithms to judge which one is ’better’
– non-perturbative effects
– hadron-parton correlation
– distances between jets
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Direct Comparison of the two Algorithms

ratio of cross sections for both
algorithms at sqrt(s)=1960 GeV

on full MC simulation
incl. underlying event

on hadron-level
(but w/o underlying event)
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similar on parton-level but large differences in ’real-world’

⇒ ... but at high pT : agreement within 6% !!
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Non-Perturbative Effects

study separately: hadronization and underlying event correction for both algorithms
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similar corrections – searchcone more sensitive to UE

but not relevant at high pT (results are consistent with plots from CDF QCD webpage)

⇒ higher cross section for searchcone is caused by slightly lower hadronization correction and
slightly larger underlying event effects
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Details of Comparison

event-by-event:

leading jet pT (between algorithms, and parton vs. hadron) — as a function of pT

distances between jets (between algos, and parton vs. hadron) as function of pT and z

use five pT bins: 25 − 50 − 100 − 200 − 400 − 960 GeV

use PYTHIA 6.228 w/ tune A

here: no restriction on jet rapidity! → dominated by central region
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Compare Leading Jet pT : Searchcone vs. Midpoint

event-by-event: plot ratio pT -searchcone over pT -midpoint for leading jet
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⇒ both algorithms agree better with each other on parton-level than on hadron-level
⇒ interesting feature: dip at 0.98–1.0 at low pT – on parton-level only
⇒ not symmetric – tail to larger values for searchcone
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Compare Leading Jet pT : Hadron vs. Parton-Level

event-by-event: plot ratio pT -hadron-jet over pT -parton-jet for leading jet
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⇒ better correlation between hadron- and parton-level pT for midpoint algorithm
⇒ only at lowest pT : ratio is slightly broader for midpoint (but also here: smaller tails)
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Distances between Jets

pQCD picture:
investigate the transition where a hard gluon emission is resolved as a separate jet
⇒ defined by resolution parameter of the jet algorithm

in the ’experiment’:
for every jet: plot the distances to all other jets with lower pT

as a function of pT (of the higher pT jet)
→ in five pT bins 25 − 50 − 100 − 200 − 400 − 960 GeV

in addition:
as a function of z = pT low/pT high

→ in four regions of z: 0.0 − 0.25 − 0.5 − 0.75 − 1.0

Motivation: compare later with pQCD LO/NLO predictions (Rsep parameter studies)
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Distances between Parton-Jets (1)
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⇒ similar distributions for both algorithms
⇒ but at low z, the searchcone has a suspicious tail towards small ∆R (down to Rcone/2)
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Distances between Parton-Jets (2)
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⇒ similar distributions for both algorithms
⇒ but at low z, the searchcone has a suspicious tail towards small ∆R (down to Rcone/2)
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Distances between Parton-Jets (3)

∆Rij/Rcone
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⇒ similar distributions for both algorithms
⇒ but at low z, the searchcone has a suspicious tail towards small ∆R (down to Rcone/2)

Markus Wobisch Cone Algorithms 19



Distances between Parton-Jets (4)
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⇒ similar distributions for both algorithms
⇒ but at low z, the searchcone has a suspicious tail towards small ∆R (down to Rcone/2)
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Distances between Parton-Jets (5)

∆Rij/Rcone
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⇒ similar distributions for both algorithms
⇒ but at low z, the searchcone has a suspicious tail towards small ∆R (down to Rcone/2)
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Distances between Hadron-Jets (1)

∆Rij/Rcone

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5

0.0 < z < 0.25

25 < pT/GeV < 50

midpoint
searchcone

∆Rij/Rcone

0

10000

20000

0.5 1 1.5 2 2.5 3 3.5

0.25 < z < 0.5

25 < pT/GeV < 50

midpoint
searchcone

∆Rij/Rcone

0

5000

10000

15000

0.5 1 1.5 2 2.5 3 3.5

0.5 < z < 0.75

25 < pT/GeV < 50

midpoint
searchcone

∆Rij/Rcone

0

2000

4000

6000

8000

0.5 1 1.5 2 2.5 3 3.5

0.75 < z < 1.0

25 < pT/GeV < 50

midpoint
searchcone

⇒ similar distributions for both algorithms
⇒ but at low and medium z, the searchcone has a significant tail

towards small ∆R (down to Rcone/2)
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Distances between Hadron-Jets (2)
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⇒ similar distributions for both algorithms
⇒ but at low and medium z, the searchcone has a significant tail

towards small ∆R (down to Rcone/2)
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Distances between Hadron-Jets (3)
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⇒ similar distributions for both algorithms
⇒ but at low and medium z, the searchcone has a significant tail

towards small ∆R (down to Rcone/2)
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Distances between Hadron-Jets (4)
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⇒ similar distributions for both algorithms
⇒ but at low and medium z, the searchcone has a significant tail

towards small ∆R (down to Rcone/2)
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Distances between Hadron-Jets (5)
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⇒ similar distributions for both algorithms
⇒ but at low and medium z, the searchcone has a significant tail

towards small ∆R (down to Rcone/2)

Markus Wobisch Cone Algorithms 26



Summary

searchcone has slightly larger cross section – three contributions:
(1) 6% higher on parton-level – in parton-shower MC! – (at NLO identical)
(2) slightly smaller (negative) hadronization corrections
(3) slightly larger (positive) underlying event corrections
⇒ at high pT only (1) is relevant

comparison of leading jet pT between algorithms:
– on parton-level: strong peak at one – both algorithms are most of the time identical
– on hadron-level: peak at one – but searchcone has more often a higher pT

comparison of leading jet pT between hadron- and parton-jets:
better correlation in pT between hadron- and parton-level jets for midpoint algorithm

distances between jets:
midpoint algorithm has a natural transition at ∆R = Rcone

searchcone has no clear transition between jets at the cone radius
– it allows jets to be resolved even if ∆R = Rcone/2

– this effect is very different on parton- and hadron-level
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Conclusion

In most aspects studied the searchcone algorithm is slightly worse than the midpoint
algorithm – and sometimes it is not intuitive (→ jet-jet separation)

However, for QCD jet cross sections the consequences are very small
⇒ only 6% difference between the inclusive jet cross sections for both algorithms

But beware: The effect may be much larger for multi-jet production!!
3-jet, 4-jet – when the jet-jet separation is more critical – not been studied so far!

Totally unrealistic to assume that either CDF or DØ would change
to the other algorithm during Run II

The difference of 6% is not a huge effect (same as luminosity uncertainty)

But important to settle this issue for the LHC experiments!!
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last statement

We would not have discussions like this one,

if we were only using the k⊥ algorithm!!

very important goal for the LHC experiments!!
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