
Enabling Grids for E-sciencE

www.eu-egee.org

SOAP

Richard Hopkins
National e-Science Centre, Edinburgh
February 23 / 24 2005

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 2

Enabling Grids for E-sciencE

Richard Hopkins

OUTLINE

• Goals
– To understand the structure and meaning of SOAP messages
– To understand how SOAP messages are standardly used for

RPC over HTTP
• Outline

– SOAP architecture
What soap is
Message structure
Processing Model
Faults

– SOAP Mappings
Serialisation
Bindings
RPC

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 3

Enabling Grids for E-sciencE

Richard Hopkins

“SOAP” what it is

• Name
– Originally – Simple Object Access Protocol
– Temporarily – Service Oriented Architecture Protocol ?
– Now (SOAP 1.2) – Not an acronym

• Purpose
– A extensible protocol to enable the exchange of

structured and typed information
between peers
in a decentralised, distributed environment

• Status
– SOAP 1.2 – http:www.w3.org/TR/soap12-part0

W3C recommendation, June 2003
– SOAP 1.1 – http://www.w3.org/TR/NOTE-SOAP-20000508

W3C submission May 2000 – but that’s what people use currently

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 4

Enabling Grids for E-sciencE

Richard Hopkins

Main Architectural Features

• XML based (defined as an infoset – assume XML 1.0)
• Higher order Protocol –

– Built on some underlying protocol - binding
Extensibility – can define binding for any underlying protocol
Usually HTTP – a specific standard extension

• Single Message Protocol
– Multi-message conversations require a means to associate one

message with another
Via underlying protocol (e.g. use of same connection)
Via the application (specific message-id information as part of the
soap message)

• Multi-stage message processing –
– The soap Processing model

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 5

Enabling Grids for E-sciencE

Richard Hopkins

SOAP Header

Message Structure

Each SOAP message will have:
• Envelope (XML root element)
• Header (optional)

– Multiple header blocks/entries
– For different purposes –

factorisation
– For different processing stages

• Body (mandatory)
– The payload
– Zero or more XML elements
– maybe a Fault element

Specific fault reporting standard

SOAP BODY

SOAP ENVELOPE

Body Entry

HEADER ENTRY

Transport protocol

HTTP header

HEADER ENTRY
.
..

.

..

Body Entry

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 6

Enabling Grids for E-sciencE

Richard Hopkins

Multi-Stage Header Processing
• Node adopts one or more roles
• Node attempts to process headers

addressed to its roles, possibly others
• Every node has role “next”

Authenticator:<User>< Pwd> Authoriser:<AccountNUmber>

<PurchaseOrder> …</>

SOAP Processing Node
Roles/Actors

Authoriser:<User> Authoriser :<AccountNUmber>

<PurchaseOrder> …</>

UR:<AccountNumber> <creditLimit> <paymentTerms>

<PurchaseOrder> …</>

Authenticator;
Next

initialSender

Authoriser;
Next

UltimateReceiver (UR);
Next

In
te

rm
ed

ia
ri
es

 (
ze

ro
 o

r
m

o
re

)

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 7

Enabling Grids for E-sciencE

Richard Hopkins

XML Message Representation

Globally unique keyword for application-specific actor names

Identifies Soap’s Namespace – and the SOAP version used
Identifies the applications namespace – probabaly really several

HTTP …
SOAP <?xml version=“1.0”?>

<env:Envelope
xmlns:env=“http://schemas.xmlsoap.org/soap/envelope/”
xlmns:m=“http://company” >

<env:Header>
<m:authenticate env:actor=“http://company/authenticator”>

<m:username>Fred</>
<m:password>yhjik154</> </>

<m:authorise env:actor=“http://company/authoriser”>
<m:accountNumber>17-365-37a</> </></env:Header>

<env:Body>
<m:purchaseOrder> …. </> …. <env:Body> </env:Envelope>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 8

Enabling Grids for E-sciencE

Richard Hopkins

Header Attributes (Actor)

Attributes - application-specific attributes and
standardised attributes- env:encodingStyle (see later)

processing flow – actor, mustUnderstand
Actor Attribute

One actor per message;
Multiple messages with same actor;
Multiple nodes with actor role;
One node adopting multiple actor roles

• User-defined e.g. authenticator
• Next env:actor=“http://schemas.xmlsoap.org/soap/actor/next”

– the next node should process it (including the UltimateReceiver)
• Default – no actor means actor is final recipient

<env:Header>
<m:authenticate

…. application-specific-attribute=“…” ….
env:actor=“http://company/authenticator”
env:mustUnderstand=“true”>

<m:username>Fred</><m:password>yhjik154</> …. </>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 9

Enabling Grids for E-sciencE

Richard Hopkins

Must Understand

• mustUnderstand=“1” means “mandatory”
• A processing node can dynamicaly determine its set of user-

defined roles for a particular message (+ next + possibly
ultimateReceiver), E.g.
– {next, authenticator}
– {next, ultimateReceiver, authenticator}
– {next, ultimateReceiver}

<env:Header>
<m:authenticate

env:role=“http://company/authenticator”
env:mustUnderstand=“1”>

<m:username>Fred</><m:password>yhjik154</> …. </>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 10

Enabling Grids for E-sciencE

Richard Hopkins

Processing Rules

• For each message, the node has to consistently act in those roles
– Must not receive any headers not targeted at one of those roles
– Must receive all headers targeted at one of those roles
– Must process mandatory received headers
– May process non-mandatory received headers

• Receive means remove it
– may insert a similar one,

but that is a contract with this node,
not with the node inserting the original header

• Processing means either
– deal with it according to its semantics
– report an error

• Body is as amandatory header with no actor (final recipient)

<env:Header>
<m:authenticate

env:role=“http://company/authenticator”
env:mustUnderstand=“1”>

<m:username>Fred</><m:password>yhjik154</> …. </>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 11

Enabling Grids for E-sciencE

Richard Hopkins

Multiply-targeted information

• This can be used to pass graph structure in the body

<env:Header xlmns:m=“http://company” >

<m:multiUse>

<m:username id= “userNameValue”>Fred</>

…. </>

<m:authenticate

env:role=“http:/…/authenticator”>

<m:username href=“userNameValue”>
<m:password>yhjik154</> </>

<m:authorise
env:role=“http:/…/authoriser”>

<m:username href=“userNameValue”></>

header entry
holding
multi-used
information

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 12

Enabling Grids for E-sciencE

Richard Hopkins

SOAP Faults

Faults reported in the body – single element
Zero or more header entries –

for detail error information pertaining to
original header entries SOAP Header

SOAP BODY

SOAP ENVELOPE

Fault

HEADER ENTRY

Transport protocol
HTTP header

HEADER ENTRY
.
..

Body
Fault

faultcode
faultstring
faultactor ?
detail ?

a Qname, e.g
env:mustUnderstand

Human readable text

Actor that was
operating (URI)
(default =
ultimate destination,
Mandatory otherwise)

Any structure of further application-specific information
Its presence means body was processed

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 13

Enabling Grids for E-sciencE

Richard Hopkins

Fault Message Example
<env:Envelope xlmns:env=“… .org/soap/envelope”>

<env:Body >
<env:Fault>

<env:faultcode>env:Server</>
<env:faultstring>Server Error</></>
<env:detail

xlmns:m=“http://company”
env:encodingStyle=“…”>

<m:faultdetail1>
<m:faultcode>129</>
<m:excuse>

not my fault really </> </>
<m:faultdetail2> …. </>

</></></></>

Standard error code

Application-specific
Error code

Explanation

Explanation

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 14

Enabling Grids for E-sciencE

Richard Hopkins

The Standard Fault Codes

• env:VersionMismatch
– Un-recognised namespace for the env:Envlope

• env:MustUnderstand
– A mandatory header entry was not understood

• env:Client
– It’s your fault (e.g. wrong info. In body); re-send won’t work.
– Must have detail element

• env:Server
– It’s our fault (e.g an upstream processing node not responding).
– Might succeed if sent later.
– Can have detail element

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 15

Enabling Grids for E-sciencE

Richard Hopkins

MAPPINGS

• Goals
– To understand the structure and meaning of SOAP messages
– To understand how SOAP messages are standardly used for

RPC over HTTP
• Outline

– SOAP architecture
What soap is
Message structure
Processing Model
Faults

– SOAP Mappings
Serialisation
Bindings
RPC

Intended to be orthogonal –
mix and match

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 16

Enabling Grids for E-sciencE

Richard Hopkins

Encoding Styles

• Encoding style is the serialization scheme,
– how logical structure is physically represented

• Soap-encoding is standard, but can use
– A completely different one
– An extension of soap encoding
– A combination of encodings

• Can define encoding on any element - usual scoping rules

<env:Envelope xmlns:env=“http://www.w3.org/2003/05/soap-envelope”
xlmns:m=“http://company”
env:encodingStyle= “http://schemas.xmlsoap.org/soap/encoding/” >

<env:Header> … </>
<env:Body>

<m:purchaseOrder
env:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/ http://company/encodeStyle1”>
</></></>

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 17

Enabling Grids for E-sciencE

Richard Hopkins

SOAP Serialisation

• Encoding style is the serialization rules –
• For soap encoding this is

– 1. mapping
From a SOAP data model, a directed graph, with typed nodes
To a serial representation as a tree.

– 2. Defining how to represent that tree in XML

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 18

Enabling Grids for E-sciencE

Richard Hopkins

Tree-ifying A value Graph

Library
Book

[1]

Book
[2]

Title

By

Title

By

“On XML”

“On WSDL”

[1]

[2]

“Jim”

“Smith”

Library
Book

[1]

Book
[2]

Title

By

Title

By

“On XML”

“On WSDL”

[1]

[2]

“Jim”

“Smith”

Author

• Value Node
– Simple – character data – as can be defined in a Schema
– Struct – outgoing edges distinguished by role name (its accessor)
– Array - outgoing edges distinguished by position (its accessor)
– Otherwise – by role name and position (its accessor)
– Every node has a type – explicit or determined by associated schema

• Serialisation – to a forest with reference links
– A node with N incoming edges becomes

A top level node
N leaf nodes referencing it and having no components

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 19

Enabling Grids for E-sciencE

Richard Hopkins

Tree-ifying A value Graph

• No attributes for values; all values as
– Child elements, for complex types
– Character data for simple types

• Unqualified names for local;
• Otherwise qualified

<env:Envelope
xmlns:env=“…/soap/envelope”
xlmns:m=“http://company”
env:encodingStyle=“…encoding/” >

<env:Body>
<m:Library se:root=“1”>

<book> <Title> On XML</>
<By href=“A1”/> </>

<book> <Title>On WSDL</>
<By href=“A1”/> </>

<m:Author id=“A1” se:root=“0”>
<Name>Jim</>
<Name>Smith</> </></></>

Library

Book
[1]

Book
[2]

Title

By

Title

By

“On XML”

“On WSDL”

[1]

[2]

“Jim”

“Smith”

Author

• Use href and id for
cross-tree links

• Linked-to value must be
top-level body entry

• Link can cross resource
boundaries –
href is full URL

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 20

Enabling Grids for E-sciencE

Richard Hopkins

Simple Types

• string
• Boolean
• Float
• Double
• Decimal
• hexBinary

• date
• gYearMonth
• gYear
• gMonthDay
• gDay
• gMonth

• Derivations
– Lengths - length, maxLength,minLength
– Limits – minInclusive, maxInclusive, minExclusive, maxExclusive
– Digits – totalDigits, fractionalDigits – (value range and accuracy)
– pattern – regular expression [A-Z]
– enumeration – list of allowed values

• base64Binary
• anyURI
• QName
• NOTATION
• duration
• dateTime
• time

• Every simple value has a type which is a (derivation of a) primitive
type, as defined in Schemas standard, which defines their lexical
form – (Review)

• Primitive Types

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 21

Enabling Grids for E-sciencE

Richard Hopkins

SOAP Simple Types
• SOAP encoding allows all elements to have id and href attributes
• So have SOAP types that extends primitive types with those attributes
• Fragments from the SOAP encoding schema,

<xs:schema targetNamespace=
"http://schemas.xmlsoap.org/soap/encoding/">
…
<xs:attributeGroup name="commonAttributes">

<xs:attribute name="id" type="xs:ID"/>
<xs:attribute name="href" type="xs:anyURI"/>
<xs:anyAttribute namespace="##other"

processContents="lax"/>
</xs:attributeGroup>
…

…
<xs:complexType name="integer">

<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attributeGroup

ref="tns:commonAttributes"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<xsd:schema xmlns:SEnc= "http://schemas.xmlsoap.org/soap/encoding/”>
<import location= "http://schemas.xmlsoap.org/soap/encoding/”>
….. <xsd:element name=anInt type=“SEnc:integer”> ….

• Example usage – schema for a soap message

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 22

Enabling Grids for E-sciencE

Richard Hopkins

Compound Types

• If the order is significant, encoding must follow that
required order
– For Schema sequence – order is significant
– For Schema any – order is not significant

• Soap encoding schema provides two compound types
• Se:Struct – components are uniquely named
• Se:Array – components are identified by position
• Both have href and id atributes
• Arrays have further attributes

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 23

Enabling Grids for E-sciencE

Richard Hopkins

Compound Types - Arrays

• Array is of type SEnc:Array or some derivative thereof
– Attibutes SEnc:href SEnc:id for referencing

• Can specify shape and component type

<A se:arrayType=“xsd:integer [2,3] [2]”>
<A1>

<n>111</n> <n>112</n> <n>113</n>
<n>121</n> <n>122</n> <n>123</n> </>

<A2>
<n>211</n> <n>112</n> <n>213</n>
<n>221</n> <n>122</n> <n>223</n> </>

</>

<element name=“A” type=“se:Array”/>

• [2] - An array of 2
elements -

• [2,3] Each is a 2 x 3
array of

• Xsd:integer

Schema

Message

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 24

Enabling Grids for E-sciencE

Richard Hopkins

Partial Arrays

• Partially transmitted array, offset at which it starts
<se:Array se:arrayType=“xsd:integer [5]” se:offset=“[2]” >

<! - - omitted elements 0, 1 and 2-- >
<i>3</> <i>4</> </>

<se:Array se:arrayType=“xsd:integer [,] [4]”>

<se:Array se:position=“[2]”

se:arrayType=“xsd:integer[10,10]”>

<i se:position=“[0,0]”>11</>

<i se:position=“[3,8]”>49</> </></>

• Sparse Array – each element says its position

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 25

Enabling Grids for E-sciencE

Richard Hopkins

Typing

• Type of a value must be determined, either –
– Explicitly - as xsi:type attribute for the element itself
– Collectively - via type of containing compound value
– Implicitly - by name and schema definition

<A se:arrayType=“xsd:decimal [3]”>
<A1>17.40<>
<A2 xsi:type=“integer>17</>
<A3 xsi:type=“m:co-ordinate”>

<y>12</>
<x>17</></></>

<element name=“A” type=“se:Array”/>
<xs:complexType name=“co-ordinate”>

<xs:all> <xs:element name=“x” type=“xsd:integer”>
< xs:element name=“y” type=“xsd:decimal”>

implicitly

collectively

implicitly

explicitly

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 26

Enabling Grids for E-sciencE

Richard Hopkins

MAPPINGS
• Goals

– To understand the structure and meaning of SOAP messages
– To understand how SOAP messages are standardly used for

RPC over HTTP
• Outline

– SOAP architecture
What soap is
Message structure
Processing Model

– SOAP Mappings
Serialisation
Bindings
RPC

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 27

Enabling Grids for E-sciencE

Richard Hopkins

Protocol Binding – SOAP 1.1 over
HTTP

POST /invoices?InvNo=165-983 HTTP/1.1
HOST: company.org
Content-Type: text/xml; charset=“utf-8”
Content-Length: 561
SOAPAction: http://company.org/pay-invoice

<?xml version=“1.0” ?>
<env:Envelope ….> … </>

HTTP/1.1 200 OK
HOST: company.org
Content-Type: text/xml; charset=“utf-8”
Content-Length: 67

<?xml version=“1.0” ?>
<env:Envelope ….> … </>

• Request –
– Must have media type

text/xml
– Must use SOAPAction

to indicate intention of
message

– This binding requires
POST

• Response –
– Must have media type

text/xml
– Fault must use HTTP

500 response
(internal server error)

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 28

Enabling Grids for E-sciencE

Richard Hopkins

RPC standard
• Procedure P

– To
identifies a target
resource (the object in an
O-O object invocation)
In SOAP header

• Parameters
– p1 – in
– p2 – out
– p3 – in/out
– :: - of type

tN inst = instance of type tN

To.P(↓p1::t1, ↑p2::t2, ↕p3::t3):: t4

p1 p3

P

t1
inst.

invocation response

t3
inst.

p2 p3

t2
inst.

t3
inst.

t4
inst.

returned

RPC
mapping

SOAP encoding
Data Model XML body

<env:Body>
<m:P … >

<p1 …> … </>
<p3 …> … </></></>

<env:Body>
<m:PResponse … >

<returned …> … </>
<p2 …> … </>
<p3 …> … </></></>

HTTP messages

Binding

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 29

Enabling Grids for E-sciencE

Richard Hopkins

RPC Encoding - Rules
• Invocation – one element (struct)

– name = the procedure/method name (P)
– children named as the in and in/out parameter names,
– in same order as in the signature
– with same types

• Response – one element (struct)
– Name insignificant (by convention PResult)
– Children named as the output parameter names
– Plus a result child if and only if non-void result

Must be first child
• Additional Information

– Anything needed other than formal parameters/result
may be expressed in the RPC encoding

– If so it goes in the header entries, but not in the body
E.g resource (i.e. “object”) identifier – see WSRF

p1 p3

P

t1
inst.

t3
inst.

p2 p3

t2
inst.

t3
inst.

t4
inst.

returned

PResult

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 30

Enabling Grids for E-sciencE

Richard Hopkins

Example of RPC using SOAP
encoding over HTTP

POST /SubmitPurchaseOrder HTTP/1.1
Host: www.company.org/ws
Content-Type: text/xml; charset="utf-8"
Content-Length: 356
SOAPAction: “www.company.org/ws/submitPO"

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<env:Body>

<m:PurchOrd>
xmlns:m=“www.company.org/namespaces">

<acc>17-A-53</>
<items>

<item><prodCode>15-56</> <quantity>84</></>
<item><prodCode>15-56</> <quantity>84</></>

</></> </>
</>

Method
interface
not allow
mixing of
items
and acc
at
same level
So need
This
wrapper

Web Services and WSRF, 24/25 Feb 2005, NeSc -- SOAP 31

Enabling Grids for E-sciencE

Richard Hopkins

END

END

