

Web Services & WSRF Introduction

Richard Hopkins National e-Science Centre, Edinburgh February 23 / 24 2005

www.eu-egee.org

- Goals
 - An Appreciation of the role and context of Web Services
 - An understanding of the structure of this event

Web Services is the next step in the automation of inter-enterprise interaction -

Web Browsing

• Human travel agent provides "organise holiday" service by surfing the web to look for and invoking services – book a hotel; book a plane; book a car hire;; confirm bookings of best options to meet client needs.

Web Services

- The aspiration of Web services is to provide a framework that allows that same model to be used in writing an application –
- which is itself becomes an "organise a holiday" service, finding and using useful services

Mode	human intervention at –	
	service provider	service consumer
E-mail	Yes	Yes
Web browsing	Νο	Yes
Web Services	Νο	No

Richard Hopkins

Service Interaction

Enabling Grids for E-sciencE

Richard Hopkins

Enabling Grids for E-science Essential Characteristics of Web Services Approach

Need to achieve effective cooperation even though

- the different services are produced by different organisations, without any design collaboration, on different platforms (interoperability)
- the services are autonomously evolving
- Loose coupling minimum prior shared information between the designer of the two components of an interaction
 - Dynamically accessible Machine processable Meta data
 - Self-describing data in standard format XML documents
 - Description of structure of communications SCHEMAS (types)
 - Service description WSDL
 - Means for obtaining it from a repository, using standard such as UDDI
 - Communication protocol that supports this SOAP
 - Everything is a SCHEMA-described XML document –soap message, WSDL definition, schemas themselves (meta-schema)
 - Tolerance of partial understanding
 - XML allows extension points one participant may have an older WSDL definition which accommodates extensions with additional information

- Collaboration is on defining generic standards, rather than on specific design
- Two main standards bodies
 - W3C actually produces "recommendations" web community
 - OASIS industry IBM, Microsoft, Sun,
- These standards are factored to allow partial adoption and combination
 - Higher level standards build on the basic ones

Some Arising Standards

- WS-Security Framework for authentication and confidentiality
- WS-Transaction Framework for robustness of correlated interactions, e.g two phase provisionally book everything, then confirm everything
- UDDI standard repository interface
- WS-MetaDataExchange how to communicate meta-data

•

. . . .

WSRF-Related

- WS-Addressing For communication of identities between services
- WS-Notification Framework of notification interaction subscribe, publish
 WSRF Web Services Resource Framework
 - E.g. a quote is a persistent entity which will need to be identified in subsequent interactions to finalise a provisional booking – a resource
 - Consistent standard framework for creating, identifying, destroying resources
 - Close to core ubiquitous pattern; other standards use resources

- A service is a
 - S/W system designed to support interoperable machine-to-machine interaction over a network. (W3C Glossary)
- Has some of the characteristics of O-O architecture,
- The O-O class roughly corresponds to a PortType (or Interface)-
 - a collection of operations
- Object roughly corresponds to either -
 - a Service an instantiation of a PortType
 - at a particular web location
 - using a particular communication protocol and message representation
 - a "**resource**" within a service.
 - A closer correspondence
 - Multiple instances with the same interface, but different data
 - Dynamically created and destroyed by service user
 - Has defined state
- But less constrained than O-O model

GGCC A Perspective on Web Services Model

- COUPLING about intensity of communication
 - Degree of statically shared knowledge between two end of an interaction (knowledge which the programmer/designer has to know and build-in) – how much has to be communicated
 - Frequency and extendt of communication relative to processing
- A scale of looser coupling (in both senses)
- Shared variable
 - interation is
 - One end updating a variable; other end using it
- Object-Oriented
 - One end invoKing method; other end being invoked
- Web Services
 - One end (service consummer) requesting a service
 - Other end (service provider) servicing the reques
 - Quite similar to O-O (but might not be a reply!)

CGCC A Perspective on Web Services Model

Enabling Grids for E-science

Shared Variable Model - Close coupling

- The programmers of user side of an interaction know all about representation
- Shared implementation
- Suitable for single-programmer level
- Interaction of order of nanosecond
- Fine granuality
 - almost no work in a variable assignment
 - Simplest of tasks involves many interactions with variables
- Object Oriented Model Medium Coupling
 - User side of interaction knows what classes exist and their interface
 - But not their representation
 - Shared class design
 - Suitable for single-organisation level
 - Interaction of order of micro/milli-sec (possibly distributed objects)
 - Medium granuality do some work in a method invocation 20 lines of code
 - Within an object, typically use the Shared Variable model

CGCC A Perspective on Web Services Model

Enabling Grids for E-sciencE

Shared Variable Model - Close coupling

- Shared implementation ; single-programmer ; nanosec interaction
- nanosecond interaction; fine granuality;

Object-Oriented Model – Medium Coupling

- Shard Class Design ; single organsiation ;
- Micro/milli-sec interaction; medium granuality

Web Services - Loose coupling

- Programmers on user side knows how to programme the discovery of a service
- Shared standards and knowledge of standard repository
- Interaction of order of second
- Coarse granuality do enough work in a service request to justify the time taken by the communication overhead
- Within a service, typically use the Objert-oriented model service requestresponse is mapped to method invocation-return
- Progressively
 - looser coupling; more time-expensive interaction, coarser granuality
 - Each model builds on the previous one uses it internally

Richard Hopkins

Web Services and WSRF, 24/25 Feb 2005, NeSc -- Introduction 12

O-O (JAVA) Web Services

GGGG

Communication Stacks

Enabling Grids for E-sciencE

service consumer service provider

- Stub –represents service to invoker
- Tie represents invoker to service
- Glue = tie + stub

DAY 1

- 09.30 10.00 Introduction
- 10.00 11.00 XML
- 11.00 11.15 Coffee
- 11.15 12.15 Schemas
- 12.15 13.00 XMLSPY practical on Schemas
- 13.00 14.00 Lunch
- 14.00 15.00 SOAP
- 15.00 16.45 Quote of The Day Tutorial (with 15 min coffee break)

DAY 2

- 09.00 10.00 WSDL
- 10.00 12.00 File Repository Tutorial Part I (with 15 min coffee break)
- 12.00 13.00 WSRF
- 13.00 14.00 Lunch
- 14.00 16.00 File Repository Tutorial Part II (with 15 min coffee break)

- The talks contain a lot of detailed information
 - Not expected to learn all this during the course
 - For a lot of scenarios you will not need to know full details
- Intended to
 - Give an appreciation of capabilities
 - To be reference material when needed
 - A first port of call rather than the formal standards definitons
 - Which are not always easy to understand

THE END

Richard Hopkins

Web Services and WSRF, 24/25 Feb 2005, NeSc -- Introduction 17