TeV4LHC Workshop

BNL, Feb. 3-5, 2005

Top/Electroweak WG – Electroweak Summary

Conveners: Cecilia Gerber (D0), Evelyn Thomson (CDF) Tim Tait (Theory), Doreen Wackeroth (Theory)

Electroweak Bosons rapidity distributions at hadron colliders, Kirill Melnikov (Univ. of Hawaii)

Multiple Photon corrections to single W/Z production, Carlo Carloni Calame (Univ. of Pavia)

Model of nonperturbative contributions in q_T resummation, Pavel Nadolsky (ANL)

Bottom quark PDF uncertainties in h + b production, Chris Jackson (FSU) Towards improved predictions for W/Z observables

 $\sigma_{W,Z}, d\sigma/dM_T(l\nu), A_{FB}, \ldots \Rightarrow M_W, \Gamma_W, \sin^2 \theta_{eff}$, detector calibration, luminosity monitor, PDFs, ...

Status (see talks by C. Carloni Calame, K. Melnikov, P. Nadolsky):

• QCD

 $\mathcal{O}(\alpha_s^2)$ and W and Z q_T resumed implemented in MC program RESBOS (*Balazs,Nadolsky,Yuan*).

new: improved fit for nonpertubative part to q_T distribution (*Konychev*, *Nadolsky*)

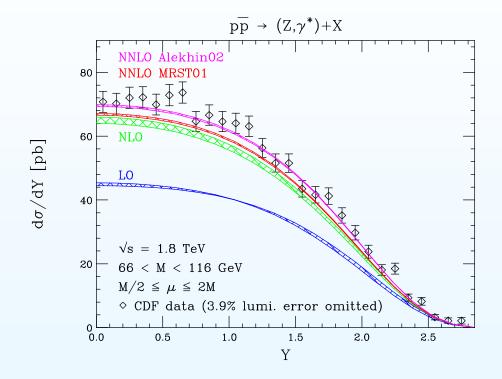
new: W and Z *y* distributions known at NNLO QCD (*Anastasiou,Melnikov,Petriello*). "Fully differial calculations for W,Z production may be getting within reach"

• EWK

Complete $\mathcal{O}(\alpha)$ corrections (*Dittmaier, Krämer; Baur,D.W.*) implemented in MC programs WGRAD, ZGRAD (*Baur,D.W.*).

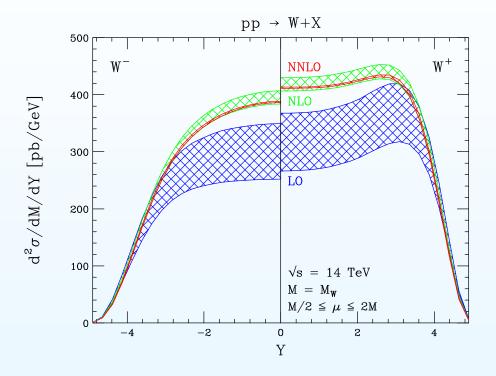
new: Multiple photon radiation in W and Z production implemented in MC program HORACE (*Carloni Calame,Montagna,Nicrosini,Treccani*). (comparison with WINHAC (*Jadach,Placzek*))

Electroweak bosons rapidity distributions at hadron colliders


Kirill Melnikov

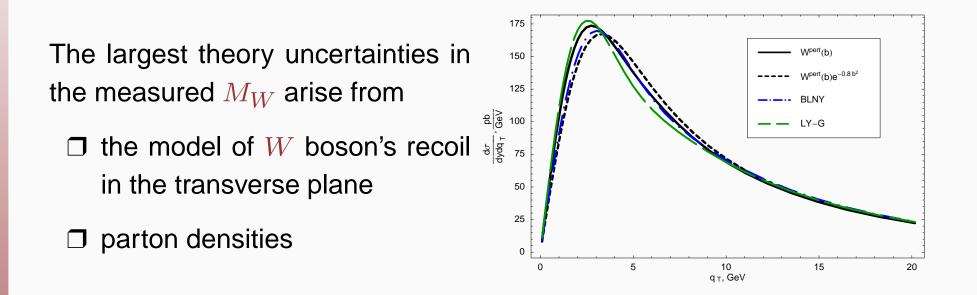
University of Hawaii at Manoa

with Babis Anastasiou, Lance Dixon, and Frank Petriello


TeV4LHC, BNL, February 2005.

${\boldsymbol Z}$ at the Tevatron

- Unnaturally small scale dependence at LO (c.f. large shift from LO to NLO).
- The width of the NNLO band is 1%.
- Both Alekhin and MRST are consistent with the data (given the error bars).


W^{\pm} at the LHC

- Very good stability; no QCD uncertainty.
- Different distribution shapes for W^{\pm} .
- W^{\pm} charge asymmetry is very stable agains higher order QCD effects and PDF uncertainties.

Model of nonperturbative contributions in q_T resummation

Anton Konychev (Indiana), Pavel Nadolsky (Argonne)

A W boson acquires $q_T \neq 0$ by recoiling against perturbative or nonperturbative QCD radiation

The peak of $d\sigma/dq_T$ shifts by up to ~ 500 MeV depending on the nonperturbative model (large effect compared to the targeted $\delta M_W \sim 30$ MeV)

A global analysis of q_T data from production of Drell-Yan pairs and Z bosons reduces this uncertainty to $\sim 50 \text{ MeV} \Rightarrow \text{today's talk}$

- □ Much more work is needed to investigate
 - o agreement between the different experiments;
 - \bigcirc correlations between $S_{NP}(b,Q)$ and normalizations of low-Q DY data;
 - \bigcirc correlations between $S_{NP}(b,Q)$ and PDF's;
 - simultaneous fit of $S_{NP}(b, Q)$ and PDF's ⇒ tools developed within CTEQ
 - O effect of the NNLO corrections
 - rapidity dependence

□ CTEQ W & Z working group systematically explores these topics

Carlo Michel Carloni Calame INFN, Sezione di Pavia, and DFNT, Pavia University

$\begin{array}{c} \textit{little} \\ \textit{Multiple photon corrections (and more)} \\ \textit{to single } W \textit{ and } Z \textit{ production} \end{array}$

TeV4LHC Workshop BNL, February 3-5 2005

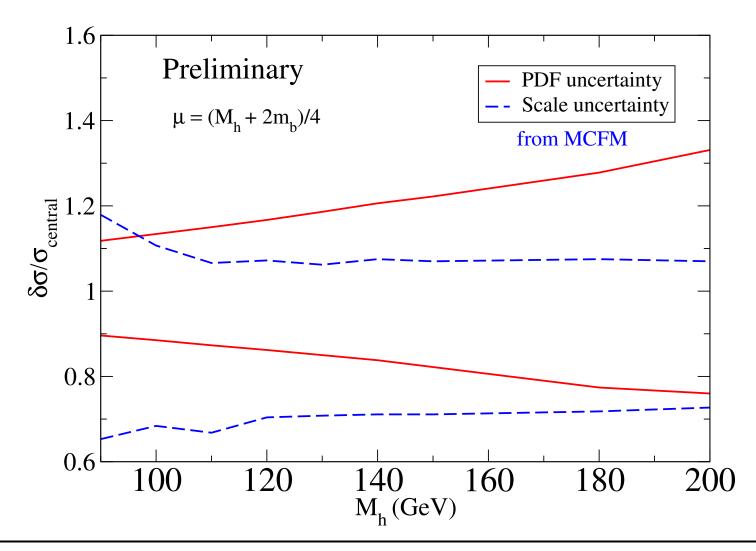
W & Z mass shifts estimate

\rightarrow the χ^2 fit shows (with "our" simplified detector!)

Particle	Smearing	Lepton ID	$\Delta M_Z^{\alpha}({ m MeV})$	$\Delta M_Z^{\text{h.o.}}(\text{MeV})$	$\Delta M_W^{\alpha}({\rm MeV})$	$\Delta M_W^{\rm h.o.}({ m MeV})$
e	×	×	595	-135		
μ	×	×	270	-31		
e	×	\checkmark	75	-5		
μ	×	\checkmark	215	-28		
e	\checkmark	×	780	-159	400	-40
μ	\checkmark	×	565	-49	220	-10
e	\checkmark	\checkmark	105	-6	20	-2
μ	\checkmark	\checkmark	420	-44	110	-10

* detailed simulation performed for the TeVatron. For the LHC, the results are similar

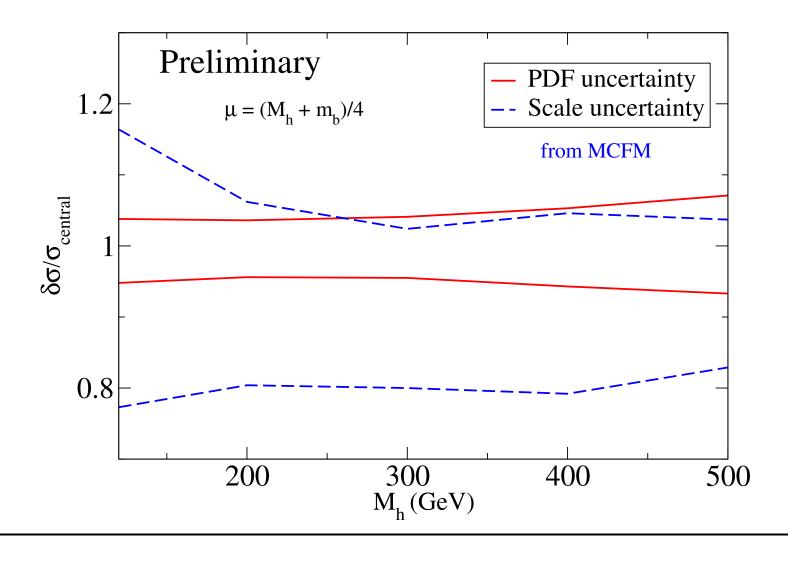
- \star higher orders reduce the $\mathcal{O}(\alpha)$ effect
- * |higher orders| $\sim 10\% \times \mathcal{O}(\alpha)$
- \star the shifts significantly depend on the detector details... ;)


Bottom Quark PDF Uncertainties and h + b Production

Chris Jackson (Florida State University) TeV4LHC, February 2005

with S. Dawson (BNL), L. Reina (FSU), and D. Wackeroth (SUNY-Buffalo)

PDF Uncertainties for $gb \rightarrow bh$ at the Tevatron (cont.)


Tevatron (1.96 GeV)

• For larger M_h , PDF uncertainties \geq uncertainties from scale dependence

PDF Uncertainties for $gb \rightarrow bh$ at the LHC (cont.)

LHC (14 TeV)

Discussion (electroweak)

Participants: U.Baur, C.Carloni Calame, K.Melnikov, G.Montagna, P.Murat, P.Nadolsky, L.H.Orr, F.Petriello, A.Vicini

Towards improved predictions for W/Z observables ...

- Towards unified generator(s) (QCD+EWK, multi-photon radiation, $\mathcal{O}(\alpha_s^2)$, $\mathcal{O}(\alpha \alpha_s)$, EWK Sudakov logs, . . .).
- Tuned comparison of Monte Carlo programs (RESBOS, W/ZGRAD, HO-RACE, WINHAC, MC@NLO, PYTHIA+PHOTOS ...) that provide precise predictions for W/Z observables (a la LEPI/II CERN yellow books):
 - Provide a recommendation of how to implement (dominant) electroweak corrections.
 - Provide an estimate of remaining theoretical uncertainties due to missing higher order corrections.

Discussion (electroweak) cont.

Participants: U.Baur, C.Carloni Calame, K.Melnikov, G.Montagna, P.Murat, P.Nadolsky, L.H.Orr, F.Petriello, A.Vicini

exp. precision				impact of h.o.			
0.2	0.5	1	2	FSR	EWK	expon. FSR	
	51	32	27	$-168 \pm 20(-65 \pm 20)$	10	10(2)	
		0.2 0.5	0.2 0.5 1	0.2 0.5 1 2	0.2 0.5 1 2 FSR	0.2 0.5 1 2 FSR EWK	

exp. prec.: see talks by C.Hays and P.Murat at 1.meeting at Fermilab.