Lepton ID at the LHC

S. Rajagopalan February 5, 2005 TEV4LHC workshop

LHC turn on

* Summer 2007

- Colliding beams in machine
- □ L ~ Can expect 10^{31} during the early months
- □ 3 month shutdown (Fall 07) followed by ~ 7 month of physics run
- □ Can expect L to steadily increase to 2 x 10³³
- Can expect 1 to 10 fb⁻¹ per experiment in the first year
 Though a lot of uncertainties in schedule and luminosity
- Commissioning Phase: (starting summer 2005)
 - Sub-System Calibration + Cosmic Ray Commissioning
 - □ April 2007 : single beam in machine
 - ж Beam Gas, Beam Halo

Will the detectors be operational?

- Understand and calibrate the detector response
- □ Validate SM signatures ($Z \rightarrow \ell \ell$, $W \rightarrow \ell \nu$, ...)
- □ Which will allow us to prepare the groundwork for discovery physics
- As with any previous experiments, can expect to spend the first few months
 - understanding the detector response
 - optimization of reconstruction algorithms, calibration/alignment
- * It is here where we can benefit from the Tevatron experience
 - Understand what chaos we can expect on Day 1
 - □ Help us ensure that we go in prepared.

Initial layout

Impact on physics visible but acceptable

S. Rajagopalan

Muon Performance

- Muon Spectrometer resolution dominates for P_T > 100 GeV/c
- Resolution fairly constant over whole eta range
- Coverage |η| < 2.7

CMS: N. Neumeister CHEP04 $\Delta(\overline{p_T})$ $P_{T} = 1000 \text{ Ge}$ 10⁻¹ P_T = 100 GeV PT = 500 GeV PT = 50 GeV 10⁻² 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 1 2.2 Λ Silicon Tracker resolution dominates for all P_{T} • Excellent p_{T} resolution in barrel region, worse in endcap Coverage |η| < 2.4

From "Physics at LHC 2004", Vienna, July 2004

S. Rajagopalan

$H \rightarrow \gamma \gamma$ used as benchmark to assess EM Calorimeter performance

- ~ 1% mass resolution to observe signal over $\gamma\gamma$ continuum
- \rightarrow Constant term in energy resolution < 0.7%

Scintillating Crystal EM calorimeter, 75000 PbW04 crystals (0.0175x0.0175)

 $(\sigma/E)^2 = (2.7\%/\sqrt{E})^2 + (0.55\%/E)^2 + (0.155)^2 @ \eta=0$ $(\sigma/E)^2 = (5.7\%/\sqrt{E})^2 + (0.55\%/E)^2 + (0.205)^2$ @ $\eta=2$

To achieve ~ 0.5% constant term,

- \rightarrow Long-term : Must rely on E/p from W \rightarrow ev
- → uncertainty in tracking material (particularly endcaps)
- \rightarrow studies ongoing to deal with brem effects

ATLAS EM Calorimeter

- * Pb-LAr Accordion sampling calorimeter
 - □ Completed, Barrel calorimeter in the pit, Endcap under tests
 - Extensive tests of modules at test-beam
 - □ Commissioning in pit to commence mid-2005

4 Longitudinal Samplings: (η < 3.2) PS (0.025x0.1); Strips (0.003x0.1) Middle(.025x.025), Back(.05x.025)

ATLAS EM Resolution/Linearity (test-beam data)

- ℜ Constant term c = c_L ⊕ c_{LR} < 0.7% (goal)

- ✤ Pessimistic scenario : constant term ~ 2%
 - \Box H $\rightarrow \gamma\gamma$ significance at m_H = 115 GeV degraded by 25%
 - □ Need 50% more L to recover the significance.

Examples of ongoing studies (to understand detector effects)

S. Rajagopalan

Several multi-variate analysis being explored

→ Simple Cuts, Likelihood methods, neural nets, ...

Table below shows studies based on simple cuts

Electron Efficiency ~ 70% with stringent cuts, Jet Rejection Factors ~ 10^5

(large systematic errors, sensitive to fragmentation models)

Cuts			Low lum	ninosity		High luminosity				
	Eff e ₂₀ (%)		Eff e ₃₀ (%)		Rej jets (10 ³)		Eff e ₃₀ (%)		Rej jets (10 ³)	
LVL1	94.0		99.0		0.08		96.1		0.09	
LVL2 Calo	90.5	(96.3)	96.9	(97.8)	0.39	(4.9)	92.1	(95.6)	0.48	(5.2)
LVL2 ID	82.5	(91.1)	87.9	(90.7)	3.5	(8.9)	82.5	(89.5)	3.7	(7.8)
Offline Calo	80.9	(98.1)	86.8	(98.6)	9.8	(2.8)	81.1	(98.3)	8.4	(2.2)
Offline ID	77.4	(93.8)	83.0	(94.5)	16.8	(1.7)	77.2	(93.6)	22.7	(2.7)
Matching	75.4	(97.5)	79.5	(95.7)	40	(2.4)	75.3	(97.4)	35.8	(1.6)
TR	68.5	(90.8)	72.7	(91.4)	>150		67.5	(89.7)	>45	

Impact on H→4ℓ

Mass resolution at $10^{33} = 1.54$ GeV Resolution at $10^{34} = 1.87$ GeV Acceptance in $\pm 2\sigma$ window ~ 85% Efficiency of four electron id ~ 69% \rightarrow Average Eff per electron ~ 91%

S. Kajagopalan

 5σ discovery potential for m_H = 200 GeV Requires good quality E, p measurement in ECAL and Tracker to limit tails and improve $\sigma/m \sim 1\%$

Three primary cuts are used to identify tau's:

- □ R_{EM} : Radius computed using EM cells
- $\Box \Delta E_T^{12}$: E_T in 0.1 < ΔR < 0.2
- □ N_{TR} : # of tracks with P_T > 2 GeV in ΔR < 0.3

Identification Efficiency and background rejection:

Variable	Cut	$b\overline{b}A ightarrow au au$	$A \rightarrow \tau \tau$	QCD jets	<i>b</i> -jets	ŧ	W+jets
<p<sub>T> of τ–jet (GeV)</p<sub>		80	73	44	58	65	52
R _{em}	< 0.07	56 ± 1	45 ± 1	1.1 ± 0.1	1.9 ± 0.4	1.3 ± 0.2	2.9 ± 0.5
$\Delta E_{\mathrm{T}}^{12}$	< 0.1	40 ± 1	32 ± 1	0.6 ± 0.05	0.9 ± 0.2	0.7 ± 0.2	1.8 ± 0.5
$N_{ m tr}\left(p_{ m T}>2 ight)$	= 1	21 ± 1	17 ± 1	0.09 ± 0.02	< 0.06	0.08 ± 0.06	0.6 ± 0.3
$N_{ m tr}\left(p_{ m T}>2 ight)$	= 1 or = 3	32 ± 1	25 ± 1	0.19 ± 0.03	0.18 ± 0.1	0.2 ± 0.1	1.1 ± 0.3

Tau Identification (3)

Other approaches being considered for tau identification

- \rightarrow Work begun on Likelihood approach
- \rightarrow : Seems to give factor of 2 to 5 improvement in rejection over simple cuts
 - → Caveat: Different sample comparison,

more input variables (impact parameter), large errors (30%)

(Other approaches: Neural network, track based approach + energy flow

being investigated)

Tau Identification (4) impact on VBF $H \rightarrow \tau \tau$

Likelihood approach:

- L > 1 give single tau efficiency of 70% with background of ~ x100
- □ 5σ significance for VBF H→ττ expected with 30 fb⁻¹ (fast simulation)
- Studies with full simulation foretell smaller significance

 - **#** Cuts need to be reoptimized to reflect realism
 - Possibility to recover 30% more events which have unphysical solution

* Lepton-ID studies and impact on physics being studied.

- Geant-4 based simulation + new reconstruction software
- Experience being gained through
 - □ Test-beam exercises
 - Data Challenges
 - Commissioning phase to begin soon.

Must prepare ourselves for Day 1 scenario

- □ How to deal with limited understanding of detector sub-systems?
- □ Experience from Tevatron can play a crucial role
- □ To bring us up to speed quickly and be in a position for real physics

TB data has shown we can predict physics pulse shape from calibration signals to better than 0.2%. But need to understand underlying event effects

Need to verify during real data taking from a sample of isolated electrons

Clustering

- Measure Cell energy to EM scale
 - □ Correcting for HV, dead channels,...
- * Calorimeter Clustering: (Cone, Nearest Neighbour)
 - Two clustering algorithms being studied : Cone and Nearest Neighbour
 - Correct for position biases, energy modulation, upstream material, cracks, containment, etc.

S. Rajagopalan

Combined Reconstruction

- □ Identify EM clusters and correct for calorimeter effects
- □ Look for well matched track (+ TRT confirmation)
- □ Handle conversions and brem recovery
- □ Corrections for electrons vs photons
- $\Box \rightarrow$ candidates for input to physics analysis.

Soft electrons

□ Start with track as seed, extrapolate back to calorimeter and cluster.