Model of nonperturbative contributions in q_T resummation

Anton Konychev (Indiana), Pavel Nadolsky (Argonne)

A W boson acquires $q_T \neq 0$ by recoiling against perturbative or nonperturbative QCD radiation

The peak of $d\sigma/dq_T$ shifts by up to ~ 500 MeV depending on the nonperturbative model (large effect compared to the targeted $\delta M_W \sim 30$ MeV)

A global analysis of q_T data from production of Drell-Yan pairs and Z bosons reduces this uncertainty to $\sim 50 \text{ MeV} \Rightarrow \text{today's talk}$

 q_T resummation: available methods

G Formalism in impact parameter (b) space (Collins, Soper, Sterman, 1985)

- \bigcirc proved by a factorization theorem for k_T -dependent PDF's (J. Collins, A. Metz, 2004; X. Ji, J.-P. Ma, F. Yuan, 2004)
- theory symmetries preserved automatically
- O conservation of momentum
- O fast and accurate evaluation of Fourier-Bessel transform possible (ResBos, Balazs, P. N., Yuan)
- \Box Formalism in q_T space (Ellis, Veseli)
- **joint resummation** (*Li; Kulesza, Sterman, Vogelsang; ...*)
- \Box gauge-invariant k_T -dependent PDFs (Ji, Ma, Yuan and many others)
- Ο....

I will discuss *b*-space formalism at NLO QCD at $x \gtrsim 10^{-2}$

The resummed cross section in theory

$$\frac{d\sigma_{AB\to VX}}{dQ^2 dy dq_T^2}\Big|_{q_T^2 \ll Q^2} = \sum_{\substack{a,b=g, (u, d, d), \dots}} \int_0^\infty \frac{bdb}{2\pi} J_0(q_T b) \widetilde{W}_{ab}(b, Q, x_A, x_B)$$

$$\widetilde{W}_{ab}(b,Q,x_A,x_B) = |\mathcal{H}_{ab}|^2 e^{-\mathcal{S}(b,Q)} \overline{\mathcal{P}}_a(x_A,b) \overline{\mathcal{P}}_b(x_B,b)$$

= $\widetilde{W}_{LP}(b,Q,x_A,x_B) \otimes \widetilde{W}_{PS}(b,Q,x_A,x_B)$

 $S(b,Q), \overline{\mathcal{P}}_a$ are universal in Drell-Yan-like processes Leading-power (LP) terms: do not vanish at $b \rightarrow 0$

$$\widetilde{W}_{LP}(b,Q) = \sum_{k=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^k \sum_{m=0}^{2k} w_{km} \ln^m (Qb)$$

Power-suppressed (PS) terms are proportional to even powers of b

(Korchemsky, Sterman; Tafat)

$$\widetilde{W}_{PS}(b,Q) \approx \exp\left[-\sum_{p=1}^{\infty} b^{2p} f_p(\ln Q)\right]; \quad f_p \sim \Lambda_{QCD}^{2p}$$

The resummed cross section in a global fit

$$\widetilde{W}_{ab}(b,Q) \equiv \widetilde{W}_{pert}(b,Q)e^{-S_{NP}(b,Q)},$$

where

 \square at $b \lesssim 1~{
m GeV}^{-1}$,

$$\widetilde{W}_{pert}(b,Q) = \sum_{k=0}^{N} \left(\frac{\alpha_s}{\pi}\right)^k \sum_{m=0}^{2k} w_{km} \ln^m (Qb)$$

□ W_{pert}(b, Q) is continued in some fashion to b > 1 GeV⁻¹;
 □ e^{-S_{NP}} is the universal effective nonperturbative exponent to be found from the fit:

$$e^{-S_{NP}(b,Q)} \equiv \frac{\widetilde{W}}{\widetilde{W}_{pert}} = \frac{\widetilde{W}_{LP} \otimes \widetilde{W}_{PS}}{\widetilde{W}_{pert}}$$

□ if $\widetilde{W}_{pert} \approx \widetilde{W}_{LP}$ at all *b*, the fit should prefer $S_{NP}(b,Q) \approx -\ln\left[\widetilde{W}_{PS}(b,Q)\right] \approx b^2 f(\ln Q) \oplus \text{ small corrections}$

bW(b,Q) in Z boson production

□ 0.5 ≤ $b \le 1.5 - 2 \text{ GeV}^{-1}$: higher-order terms in α_s and b^p important; contributes some variations in $d\sigma/dq_T$ at $q_T \le 10 \text{ GeV}$ □ $b \ge 1.5 - 2 \text{ GeV}^{-1}$: terra incognita; tiny contributions $\widetilde{W}_{pert}(b,Q)$ at large b: the b_* prescription (Collins, Soper, 1982; CSS, 1985)

$$\widetilde{W}(b,Q) = \widetilde{W}_{pert}(b_*,Q)e^{-S_{NP}(b,Q;b_{max})}$$

$$b_{*}(b, b_{max}) \equiv \frac{b}{\sqrt{1 + \left(\frac{b}{b_{max}}\right)^{2}}} = \begin{cases} b & \text{at } b \ll b_{max} \\ b_{max} & \text{at } b \gg b_{max} \end{cases}$$

$$\widetilde{W}_{pert}(b_*, Q) = \sum_j \sigma_0 e^{-S_{pert}(b_*, Q)}$$
$$\times \left[\mathcal{C}_{j/a} \otimes f_{a/A} \right] (x_A, b_*, \mu_F(b_*)) \left[\mathcal{C}_{\overline{j}/b} \otimes f_{b/B} \right] (x_B, b_*, \mu_F(b_*))$$

$$\begin{bmatrix} \mathcal{C}_{j/a} \otimes f_{a/A} \end{bmatrix} (x, b_*, \mu_F(b_*)) = \int_x^1 \frac{d\xi}{\xi} \mathcal{C}_{j/a} \left(\frac{x}{\xi}, \frac{b_* \mu_F(b_*)}{b_0} \right) f_{a/A}(\xi, \mu_F(b_*))$$

with $b_0 \equiv 2e^{-\gamma_E} \approx 1.123$; $\mu(b_*) \approx b_0/b_*$.

Upper constraint on b_{max}

In
$$\left[\mathcal{C}_{j/a}\otimes f_{a/A}
ight](x,b_*,\mu_F(b_*)),$$
 we choose

to prevent appearance of large collinear logarithms in

$$C_{j/a}\left(x, \frac{b_*\mu_F(b_*)}{b_0}\right) = \sum_{k,m} \left(\frac{\alpha_s}{\pi}\right)^k \left[P_{j/a}(x) \ln^m(\frac{b_*\mu_F(b_*)}{b_0}) + \dots\right]$$

 $\mu_F(b_*) \approx \frac{b_0}{b_*}$

The collinear logs are resummed by DGLAP equations in $f_{a/A}(x, \mu_F(b_*))$

The PDF parametrizations are only available at $\mu_F > Q_{ini} = 1 - 1.3 \text{ GeV}$ $\Rightarrow b_{max}$ cannot exceed $b_0/Q_{ini} \sim 0.86 - 1.123 \text{ GeV}^{-1}$

 $\Rightarrow W^{pert}(b_*, Q)$ deviates from the exact PQCD result at $b \sim 1 \text{ GeV}^{-1}!$

 \Rightarrow Compensated in part by the phenomenological $S_{NP}(b,Q;b_{max})$

$$\Rightarrow$$
 Can affect validity of the calculation???

NLO global analysis of q_T distributions (R. Brock, F. Landry, P.N., C.-P. Yuan, 2002)

☐ simultaneous fit to low-Q Drell-Yan (E288, E605, and R209) and Tevatron Run-0 and Run-1 Z data

 \square realized in b_* prescription with $b_{max} = 0.5 \text{ GeV}^{-1}$

 \Box the best-fit $S_{NP}(b)$ is quadratic in b (Gaussian)

$$S_{NP}(b) = b^2 \left[g_1 + g_2 \ln \left(\frac{Q}{3.2 \text{ GeV}} \right) + g_1 g_3 \ln (100 x_A x_B) \right],$$

with $g_1 = 0.21 \text{ GeV}^2, g_2 = 0.68 \text{ GeV}^2, g_3 = -0.6$

parametrizations with 2 parameters or linear terms in b fail spectacularly ($\chi^2/d.o.f. > 3$)

Unanswered questions

D Why
$$\chi^2/d.o.f. = 176/119 \sim 1.48$$
?

□ Is $S_{NP}(b, Q = M_Z) \approx (2.7 \text{ GeV}^2)b^2$ indeed mostly nonperturbative?

 \square Why 3 large parameters g_1, g_2 , and g_3 are required to get a good fit?

Qiu & Zhang: $g_3 \neq 0$ is an artifact of b_* prescription with small b_{max} ?

If so, good fits would prefer $|g_3| \rightarrow 0$

□ Can the calculation of $\widetilde{W}_{pert}(b, Q)$ in the transition region $b \sim 1 \text{ GeV}^{-1}$ be improved?

The " $2b_*$ prescription"

1. Take the original b_* prescription

$$\widetilde{W}(b,Q) = \widetilde{W}_{pert}(b_*,Q)e^{-S_{NP}(b,Q;b_{max})}$$

2. Choose $\mu_F = b_0/b'_*$ in $\left[\mathcal{C}_{j/a} \otimes f_{a/A}\right](x, b_*, \mu_F)$, with

 b_{max} can be safely increased at least up to 2 - 3 GeV⁻¹, but the scale μ_F in $f_{a/A}(x, \mu_F)$ never goes below Q_{ini}

$2b_*$ prescription: factorization scale dependence

 \Box If $\mu_F \sim Q_{ini}$, large non-resummed logarithms appear at $b_* \gg b_0/Q_{ini}$

$$C_{j/a}\left(x,\frac{b_*\mu_F}{b_0}\right) = \sum_{k,m} \left(\frac{\alpha_s}{\pi}\right)^k \left[P_{j/a}(x)\ln^m(\frac{b_*\mu_F}{b_0}) + \dots\right]$$

□ should not create problems, because the region $b_* \gg b_0/Q_{ini}$ is exponentially suppressed by $e^{-S_{pert}(b_*,Q)-S_{NP}(b,Q)}$

O confirmed by a numerical calculation

D Properties of $2b_*$ prescription

 \Box at $b_{max} \leq b_0/Q_{ini}$, reduces to the original b_* prescription

 \Box no new parameters (utilizes freedom in the choice of μ_F)

 \Box preserves continuity of $\widetilde{W}(b, Q)$ and its derivatives

□ the balance of pert. and nonpert. contributions in W(b, Q) is smoothly changed by varying b_{max}

□ at $b_{max} \gg b_0/Q_{ini}$, is structurally and numerically close to the leadinglog extrapolation of $\widetilde{W}_{pert}(b,Q)$, such as that in the principal value resummation (Sterman; Kulesza, Sterman, Vogelsang...) Perturbative form factors $b\widetilde{W}^{pert}(b,Q)$ and $b\widetilde{W}^{pert}(b_*,Q)$ in the $2b_*$ prescription for the Tevatron Run-1 Z boson production

98 data points

□ Tevatron Run-1 Z boson production (CDF, D0)

- O $Q \approx M_Z$, $\sqrt{s} =$ 1.8TeV, $p_T <$ 10 GeV
- O sizable errors

□ Fixed-target Drell-Yan pair production (E288, E605, R209)

- O Q=5-18 GeV, $p_T < 1.4$ GeV
- O small statistical errors, incomplete systematical errors; 2 outlier points in E605 sample contribute $\delta\chi^2 \approx 25$

Nonperturbative function:

$$S_{NP}(b) = b^{2-\beta} \left[g_1 + g_2 \ln \left(\frac{Q}{3.2 \text{ GeV}} \right) + g_1 g_3 \ln (100 x_A x_B) \right],$$

where $\beta = 0$ (Gaussian form) or free

Scan over $b_{max} = 0.5 - 2.5 \text{ GeV}^{-1}$

Summary of results (PRELIMINARY)

- □ Increasing b_{max} up to $1 1.5 \text{ GeV}^{-1}$ improves the quality of the fit
 - $\bigcirc \chi^2$ and $|S_{NP}(b,Q)|$ decrease
 - Best-fit $|g_3| \approx 0$
 - O Best-fit $\beta = -0.2$ (+0.3) in Drell-Yan (Z) experiments; correlated with normalizations of DY data; $\beta = 0$ in the next slides
- □ The preferred $S_{NP}(b,Q)$ is close to a two-parameter Gaussian form, $S_{NP}(b,Q) \approx [g_1 + g_2 \ln (Q/3.2)] b^2$
- □ Small, but non-zero, g_3 and β are needed because of high accuracy of E288 and E605 data

Choosing $b_{max} > 1.5 \text{ GeV}^{-1}$

- $\Box Z$ production is described well for b_{max} up to 3 4 GeV⁻¹
- □ Description of low-*Q* Drell-Yan data worsens for $b_{max} > 1.5 \text{ GeV}^{-1}$ because of rapid variations in $\widetilde{W}_{pert}(b, Q)$ at $b = 1.5 - 3 \text{ GeV}^{-1}$

□ The variations reflect absence of important higher-order logs $\sum_{k=N+1}^{\infty} \alpha_s^k \sum_m w_{km} \ln^m (Qb_{(*)})$

- □ are not easily compensated by adjustments in $S_{NP}(b, Q)$
- Similar features are present in the leading-log extrapolation
 $b_{max} \sim 1 1.5 \text{ GeV}^{-1}$ is the optimal range

$2b_*$ prescription: scan over b_{max} (PRELIMINARY)

Improvement in the properties of the fits at $b_{max} = 1 - 2 \text{ GeV}^{-1}$

Nonperturbative smearing g preferred by individual mass bins $(b_{max} = 1.2 \text{ GeV}^{-1})$

Dependence of best-fit g(Q) on $\ln Q$ is approximately linear

$$g(Q)$$
 at $Q = M_W$ and $Q = M_Z$ in the best fit ($b_{max} = 1.2 \text{ GeV}^{-1}$)

Obtained using a Lagrange multiplier method

 \Box Translates into a variation $\approx \pm 50$ MeV in the peak of $d\sigma(W)/dq_T$

$g(M_W)$: constraints from individual experiments

All data sets agree within errors; constraints from low-Q DY and Z Run-1 data are comparable

Conclusions

- Modifications in b_{*} prescription improve description of perturbative contributions at $b \sim 1 \text{ GeV}^{-1}$ and lead to better agreement with the data
- High quality of the obtained global fits supports universality of k_T -dependent factorization in Drell-Yan-like processes
- □ For $b_{max} \sim 1-1.5 \text{ GeV}^{-1}$, the data prefer a nearly Gaussian $S_{NP}(b, Q)$ with approximately linear universal dependence on $\ln Q$ ($g_3 \approx 0$)
- Our preliminary estimate is $S_{NP}(b, Q = M_W) \approx (1.03 \pm 0.07)b^2$ for $b_{max} = 1.2 \text{ GeV}^{-1}$

- □ Much more work is needed to investigate
 - agreement between the different experiments;
 - \bigcirc correlations between $S_{NP}(b,Q)$ and normalizations of low-Q DY data;
 - \bigcirc correlations between $S_{NP}(b,Q)$ and PDF's;
 - simultaneous fit of $S_{NP}(b, Q)$ and PDF's ⇒ tools developed within CTEQ
 - O effect of the NNLO corrections
 - rapidity dependence

□ CTEQ W & Z working group systematically explores these topics