Model of nonperturbative contributions in q_{T} resummation
Anton Konychev (Indiana), Pavel Nadolsky (Argonne)

The largest theory uncertainties in the measured M_{W} arise from

I the model of W boson's recoil in the transverse plane
\square parton densities

A W boson acquires $q_{T} \neq 0$ by recoiling against perturbative or nonperturbative QCD radiation

The peak of $d \sigma / d q_{T}$ shifts by up to $\sim 500 \mathrm{MeV}$ depending on the nonperturbative model (large effect compared to the targeted $\delta M_{W} \sim 30 \mathrm{MeV}$)

A global analysis of q_{T} data from production of Drell-Yan pairs and Z bosons reduces this uncertainty to $\sim 50 \mathrm{MeV} \Rightarrow$ today's talk
q_{T} resummation: available methods
\square Formalism in impact parameter (b) space (Collins, Soper, Sterman, 1985)
O proved by a factorization theorem for k_{T}-dependent PDF's (J. Collins, A. Metz, 2004; X. Ji, J.-P. Ma, F. Yuan, 2004)

O theory symmetries preserved automatically
O conservation of momentum
O fast and accurate evaluation of Fourier-Bessel transform possible (ResBos, Balazs, P. N., Yuan)
\square Formalism in q_{T} space (Ellis, Veseli)
\square joint resummation (Li; Kulesza, Sterman, Vogelsang; ...)
\square gauge-invariant k_{T}-dependent PDFs (Ji, Ma, Yuan and many others)

- ..

I will discuss b-space formalism at NLO QCD at $x \gtrsim 10^{-2}$

The resummed cross section in theory

$$
\begin{aligned}
\left.\frac{d \sigma_{A B \rightarrow V X}}{d Q^{2} d y d q_{T}^{2}}\right|_{q_{T}^{2} \ll Q^{2}}= & \sum_{a, b=g, \stackrel{(-)}{u}, \stackrel{(-)}{d}, \ldots} \int_{0}^{\infty} \frac{b d b}{2 \pi} J_{0}\left(q_{T} b\right) \widetilde{W}_{a b}\left(b, Q, x_{A}, x_{B}\right) \\
\widetilde{W}_{a b}\left(b, Q, x_{A}, x_{B}\right) & =\left|\mathcal{H}_{a b}\right|^{2} e^{-\mathcal{S}(b, Q)} \overline{\mathcal{P}}_{a}\left(x_{A}, b\right) \overline{\mathcal{P}}_{b}\left(x_{B}, b\right) \\
& =\widetilde{W}_{L P}\left(b, Q, x_{A}, x_{B}\right) \otimes \widetilde{W}_{P S}\left(b, Q, x_{A}, x_{B}\right)
\end{aligned}
$$

$S(b, Q), \overline{\mathcal{P}}_{a}$ are universal in Drell-Yan-like processes
Leading-power (LP) terms: do not vanish at $b \rightarrow 0$

$$
\widetilde{W}_{L P}(b, Q)=\sum_{k=0}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{k} \sum_{m=0}^{2 k} w_{k m} \ln ^{m}(Q b)
$$

Power-suppressed (PS) terms are proportional to even powers of b (Korchemsky, Sterman; Tafat)

$$
\widetilde{W}_{P S}(b, Q) \approx \exp \left[-\sum_{p=1}^{\infty} b^{2 p} f_{p}(\ln Q)\right] ; \quad f_{p} \sim \Lambda_{Q C D}^{2 p}
$$

The resummed cross section in a global fit

$$
\widetilde{W}_{a b}(b, Q) \equiv \widetilde{W}_{p e r t}(b, Q) e^{-S_{N P}(b, Q)}
$$

where
\square at $b \lesssim 1 \mathrm{GeV}^{-1}$,

$$
\widetilde{W}_{p e r t}(b, Q)=\sum_{k=0}^{N}\left(\frac{\alpha_{s}}{\pi}\right)^{k} \sum_{m=0}^{2 k} w_{k m} \ln ^{m}(Q b)
$$

$\square \widetilde{W}_{\text {pert }}(b, Q)$ is continued in some fashion to $b>1 \mathrm{GeV}^{-1}$;
] $e^{-S_{N P}}$ is the universal effective nonperturbative exponent to be found from the fit:

$$
e^{-S_{N P}(b, Q)} \equiv \frac{\widetilde{W}}{\widetilde{W}_{\text {pert }}}=\frac{\widetilde{W}_{L P} \otimes \widetilde{W}_{P S}}{\widetilde{W}_{\text {pert }}}
$$

\square if $\widetilde{W}_{\text {pert }} \approx \widetilde{W}_{L P}$ at all b, the fit should prefer

$$
S_{N P}(b, Q) \approx-\ln \left[\widetilde{W}_{P S}(b, Q)\right] \approx b^{2} f(\ln Q) \oplus \text { small corrections }
$$

$b W(b, Q)$ in Z boson production

ㅁ $0.5 \lesssim b \lesssim 1.5-2 \mathrm{GeV}^{-1}$: higher-order terms in α_{s} and b^{p} important; contributes some variations in $d \sigma / d q_{T}$ at $q_{T} \lesssim 10 \mathrm{GeV}$
$\square b \gtrsim 1.5-2 \mathrm{GeV}^{-1}$: terra incognita; tiny contributions
$\widetilde{W}_{\text {pert }}(b, Q)$ at large b : the b_{*} prescription (Collins, Soper, 1982; CSS, 1985)

$$
\begin{gathered}
\widetilde{W}(b, Q)=\widetilde{W}_{\text {pert }}\left(b_{*}, Q\right) e^{-S_{N P}\left(b, Q ; b_{\text {max }}\right)} \\
b_{*}\left(b, b_{\max }\right) \equiv \frac{b}{\sqrt{1+\left(\frac{b}{b_{\text {max }}}\right)^{2}}}=\left\{\begin{array}{cc}
b & \text { at } b \ll b_{\text {max }} \\
b_{\text {max }} & \text { at } \\
b \gg b_{\text {max }}
\end{array}\right. \\
\widetilde{W}_{\text {pert }}\left(b_{*}, Q\right)=\sum_{j} \sigma_{0} e^{-S_{p e r t}\left(b_{*}, Q\right)} \\
\times\left[\mathcal{C}_{j / a} \otimes f_{a / A}\right]\left(x_{A}, b_{*}, \mu_{F}\left(b_{*}\right)\right)\left[\mathcal{C}_{\bar{j} / b} \otimes f_{b / B}\right]\left(x_{B}, b_{*}, \mu_{F}\left(b_{*}\right)\right) \\
{\left[\mathcal{C}_{j / a} \otimes f_{a / A}\right]\left(x, b_{*}, \mu_{F}\left(b_{*}\right)\right)=\int_{x}^{1} \frac{d \xi}{\xi} \mathcal{C}_{j / a}\left(\frac{x}{\xi}, \frac{b_{*} \mu_{F}\left(b_{*}\right)}{b_{0}}\right) f_{a / A}\left(\xi, \mu_{F}\left(b_{*}\right)\right)} \\
\text { with } b_{0} \equiv 2 e^{-\gamma_{E}} \approx 1.123 ; \mu\left(b_{*}\right) \approx b_{0} / b_{*} .
\end{gathered}
$$

Upper constraint on $b_{\max }$

$\ln \left[\mathcal{C}_{j / a} \otimes f_{a / A}\right]\left(x, b_{*}, \mu_{F}\left(b_{*}\right)\right)$, we choose

$$
\mu_{F}\left(b_{*}\right) \approx \frac{b_{0}}{b_{*}}
$$

to prevent appearance of large collinear logarithms in

$$
C_{j / a}\left(x, \frac{b_{*} \mu_{F}\left(b_{*}\right)}{b_{0}}\right)=\sum_{k, m}\left(\frac{\alpha_{s}}{\pi}\right)^{k}\left[P_{j / a}(x) \ln ^{m}\left(\frac{b_{*} \mu_{F}\left(b_{*}\right)}{b_{0}}\right)+\ldots\right]
$$

The collinear logs are resummed by DGLAP equations in $f_{a / A}\left(x, \mu_{F}\left(b_{*}\right)\right)$
The PDF parametrizations are only available at $\mu_{F}>Q_{i n i}=1-1.3 \mathrm{GeV}$ $\Rightarrow b_{\max }$ cannot exceed $b_{0} / Q_{\text {ini }} \sim 0.86-1.123 \mathrm{GeV}^{-1}$
$\Rightarrow W^{\text {pert }}\left(b_{*}, Q\right)$ deviates from the exact PQCD result at $b \sim 1 \mathrm{GeV}^{-1}$!
\Rightarrow Compensated in part by the phenomenological $S_{N P}\left(b, Q ; b_{\max }\right)$
\Rightarrow Can affect validity of the calculation???

NLO global analysis of q_{T} distributions
(R. Brock, F. Landry, P.N., C.-P. Yuan, 2002)
\square simultaneous fit to low- Q Drell-Yan (E288, E605, and R209) and Tevatron Run-0 and Run-1 Z data
\square realized in b_{*} prescription with $b_{\max }=0.5 \mathrm{GeV}^{-1}$
\square the best-fit $S_{N P}(b)$ is quadratic in b (Gaussian)

$$
\begin{aligned}
& \quad S_{N P}(b)=b^{2}\left[g_{1}+g_{2} \ln \left(\frac{Q}{3.2 \mathrm{GeV}}\right)+g_{1} g_{3} \ln \left(100 x_{A} x_{B}\right)\right], \\
& \text { with } g_{1}=0.21 \mathrm{GeV}^{2}, g_{2}=0.68 \mathrm{GeV}^{2}, g_{3}=-0.6
\end{aligned}
$$

\square parametrizations with 2 parameters or linear terms in b fail spectacularly $\left(\chi^{2} /\right.$ d.o.f. $\left.>3\right)$

Unanswered questions

ㅁ Why $\chi^{2} /$ d.o.f. $=176 / 119 \sim 1.48$?
\square Is $S_{N P}\left(b, Q=M_{Z}\right) \approx\left(2.7 \mathrm{GeV}^{2}\right) b^{2}$ indeed mostly nonperturbative?
\square Why 3 large parameters g_{1}, g_{2}, and g_{3} are required to get a good fit?

Qiu \& Zhang: $g_{3} \neq 0$ is an artifact of b_{*} prescription with small $b_{\text {max }}$?
If so, good fits would prefer $\left|g_{3}\right| \rightarrow 0$
\square Can the calculation of $\widetilde{W}_{\text {pert }}(b, Q)$ in the transition region $b \sim 1 \mathrm{GeV}^{-1}$ be improved?

The " $2 b_{*}$ prescription"

1. Take the original b_{*} prescription

$$
\widetilde{W}(b, Q)=\widetilde{W}_{p e r t}\left(b_{*}, Q\right) e^{-S_{N P}\left(b, Q ; b_{\max }\right)}
$$

2. Choose $\mu_{F}=b_{0} / b_{*}^{\prime}$ in $\left[\mathcal{C}_{j / a} \otimes f_{a / A}\right]\left(x, b_{*}, \mu_{F}\right)$, with

$$
b_{*}^{\prime} \equiv b_{*}\left(b, b_{\max }^{\prime}\right),
$$

and

$$
\begin{gathered}
b_{\text {max }}^{\prime}=\min \left(b_{\text {max }}, b_{0} / Q_{i n i}\right) \\
\mu_{F}=\left\{\begin{array}{ccc}
\sim 1 / b & \text { for } & b \ll b_{0} / Q_{i n i} \\
Q_{i n i} & \text { for } & b \gtrsim b_{0} / Q_{i n i}
\end{array}\right.
\end{gathered}
$$

$b_{\max }$ can be safely increased at least up to $2-3 \mathrm{GeV}^{-1}$, but the scale μ_{F} in $f_{a / A}\left(x, \mu_{F}\right)$ never goes below $Q_{i n i}$
$2 b_{*}$ prescription: factorization scale dependence

- If $\mu_{F} \sim Q_{i n i}$, large non-resummed logarithms appear at $b_{*} \gg b_{0} / Q_{i n i}$

$$
C_{j / a}\left(x, \frac{b_{*} \mu_{F}}{b_{0}}\right)=\sum_{k, m}\left(\frac{\alpha_{s}}{\pi}\right)^{k}\left[P_{j / a}(x) \ln ^{m}\left(\frac{b_{*} \mu_{F}}{b_{0}}\right)+\ldots\right]
$$

\square should not create problems, because the region $b_{*} \gg b_{0} / Q_{\text {ini }}$ is exponentially suppressed by $e^{-S_{\text {pert }}\left(b_{*}, Q\right)-S_{N P}(b, Q)}$

O confirmed by a numerical calculation
\square Properties of $2 b_{*}$ prescription
\square at $b_{\max } \leq b_{0} / Q_{i n i}$, reduces to the original b_{*} prescription
\square no new parameters (utilizes freedom in the choice of μ_{F})
\square preserves continuity of $\widetilde{W}(b, Q)$ and its derivatives
\square the balance of pert. and nonpert. contributions in $\widetilde{W}(b, Q)$ is smoothly changed by varying $b_{\max }$
\square at $b_{\max } \gg b_{0} / Q_{\text {ini }}$, is structurally and numerically close to the leadinglog extrapolation of $\widetilde{W}_{\text {pert }}(b, Q)$, such as that in the principal value resummation (Sterman; Kulesza, Sterman, Vogelsang...)

Perturbative form factors $b \widetilde{W}^{\text {pert }}(b, Q)$ and $b \widetilde{W}^{\text {pert }}\left(b_{*}, Q\right)$ in the $2 b_{*}$ prescription for the Tevatron Run- $1 Z$ boson production

Global fits in $2 b_{*}$ prescription $\stackrel{\sim}{\text { New! }}$
98 data points
\square Tevatron Run-1 Z boson production (CDF, D0)
$O \approx M_{Z}, \sqrt{s}=1.8 \mathrm{TeV}, p_{T}<10 \mathrm{GeV}$
O sizable errors
\square Fixed-target Drell-Yan pair production (E288, E605, R209)
O $Q=5-18 \mathrm{GeV}, p_{T}<1.4 \mathrm{GeV}$
O small statistical errors, incomplete systematical errors; 2 outlier points in E605 sample contribute $\delta \chi^{2} \approx 25$

Nonperturbative function:

$$
S_{N P}(b)=b^{2-\beta}\left[g_{1}+g_{2} \ln \left(\frac{Q}{3.2 \mathrm{GeV}}\right)+g_{1} g_{3} \ln \left(100 x_{A} x_{B}\right)\right]
$$

where $\beta=0$ (Gaussian form) or free
Scan over $b_{\max }=0.5-2.5 \mathrm{GeV}^{-1}$

Summary of results (PRELIMINARY)

I Increasing $b_{\max }$ up to $1-1.5 \mathrm{GeV}^{-1}$ improves the quality of the fit

- χ^{2} and $\left|S_{N P}(b, Q)\right|$ decrease
- Best-fit $\left|g_{3}\right| \approx 0$

O Best-fit $\beta=-0.2(+0.3)$ in Drell-Yan (Z) experiments; correlated with normalizations of DY data; $\beta=0$ in the next slides
\square The preferred $S_{N P}(b, Q)$ is close to a two-parameter Gaussian form, $S_{N P}(b, Q) \approx\left[g_{1}+g_{2} \ln (Q / 3.2)\right] b^{2}$
\square Small, but non-zero, g_{3} and β are needed because of high accuracy of E288 and E605 data

Choosing $b_{\max }>1.5 \mathrm{GeV}^{-1}$

$\square Z$ production is described well for $b_{\max }$ up to $3-4 \mathrm{GeV}^{-1}$
\square Description of low- Q Drell-Yan data worsens for $b_{\max }>1.5 \mathrm{GeV}^{-1}$ because of rapid variations in $\widetilde{W}_{p e r t}(b, Q)$ at $b=1.5-3 \mathrm{GeV}^{-1}$

\square The variations reflect absence of important higher-order logs $\sum_{k=N+1}^{\infty} \alpha_{s}^{k} \sum_{m} w_{k m} \operatorname{In}^{m}\left(Q b_{(*)}\right)$
\square are not easily compensated by adjustments in $S_{N P}(b, Q)$
\square Similar features are present in the leading-log extrapolation
व $b_{\max } \sim 1-1.5 \mathrm{GeV}^{-1}$ is the optimal range
$2 b_{*}$ prescription: scan over $b_{\text {max }}$ (PRELIMINARY)

Improvement in the properties of the fits at $b_{\max }=1-2 \mathrm{GeV}^{-1}$

Nonperturbative smearing g preferred by individual mass bins $\left(b_{\max }=1.2 \mathrm{GeV}^{-1}\right)$

$$
\mathrm{b}_{\max }=1.2 \mathrm{GeV}^{-1}:
$$

$g\left[\mathrm{GeV}^{2}\right]$ Gaussian coefficient in $\mathrm{e}^{-\mathrm{gb}^{2}}$

Dependence of best-fit $g(Q)$ on $\operatorname{In} Q$ is approximately linear
$g(Q)$ at $Q=M_{W}$ and $Q=M_{Z}$ in the best fit $\left(b_{\max }=1.2 \mathrm{GeV}^{-1}\right)$
\square Obtained using a Lagrange multiplier method

$$
g\left(M_{w}\right) \text { and } g\left(M_{z}\right)
$$

\square Errors are for $\delta \chi_{t o t}^{2}=1$
\square Translates into a variation $\approx \pm 50 \mathrm{MeV}$ in the peak of $d \sigma(W) / d q_{T}$
$g\left(M_{W}\right)$: constraints from individual experiments

$$
g\left(M_{W}\right) \text {, run } 2
$$

All data sets agree within errors; constraints from low- Q DY and Z Run-1 data are comparable

Conclusions

\square Modifications in b_{*} prescription improve description of perturbative contributions at $b \sim 1 \mathrm{GeV}^{-1}$ and lead to better agreement with the data
\square High quality of the obtained global fits supports universality of k_{T}-dependent factorization in Drell-Yan-like processes
\square For $b_{\max } \sim 1-1.5 \mathrm{GeV}^{-1}$, the data prefer a nearly Gaussian $S_{N P}(b, Q)$ with approximately linear universal dependence on $\ln Q\left(g_{3} \approx 0\right)$
\square Our preliminary estimate is $S_{N P}\left(b, Q=M_{W}\right) \approx(1.03 \pm 0.07) b^{2}$ for $b_{\max }=1.2 \mathrm{GeV}^{-1}$
\square Much more work is needed to investigate
O agreement between the different experiments;
O correlations between $S_{N P}(b, Q)$ and normalizations of low- Q DY data;
o correlations between $S_{N P}(b, Q)$ and PDF's;
O simultaneous fit of $S_{N P}(b, Q)$ and PDF's \Rightarrow tools developed within CTEQ

O effect of the NNLO corrections
O rapidity dependence
\square CTEQ W \& Z working group systematically explores these topics

