

COLUMBIA UNIVERSITY

Prospects for the Search for a Doubly Charged Higgs with ATLAS Kamal Benslama Columbia University

Physics Motivation Doubly Charged Higgs production at LHC Doubly Charged Higgs Decay Modes Analyses description Summary

TeV4LHC Higgs Working Group 02/04/2005

Physics Motivation

- L-R symmetric model would be a natural extension of the SM
 - $\blacktriangleright SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$
 - predicts new fermions: heavy Majorana neutrino
 - predicts new gauge bosons:
 W_R
 - predicts new Higgs sector

$$\Delta_R = (\Delta_R^0, \Delta_R^+, \Delta_R^{++})$$

 $\Delta_L = (\Delta_L^0, \Delta_L^+, \Delta_L^{++})$ (if Lagrangian is invariant under $L \leftrightarrow R$ symmetry)

$$\phi_{1,2}^0, \phi_{1,2}^{\pm}$$

Parameters: k_1 k_2 v_L v_R $k = \sqrt{k_1^2 + k_2^2} \sim 250 GeV$

$$p = \frac{M_{W_L}^2}{\cos^2 \theta_W M_{z1}^2} \sim \frac{1 + 2v_L^2 / k^2}{1 + 4v_L^2 / k^2} \qquad \longrightarrow \quad V_L \leq 9 \ G \ e \ V$$

K. Benslama

TeV4LHC Higgs Working Group

 $m_{W_R}^2 = g_R^2 v_R^2 / 2, \qquad g_R = g_L \approx 0.64$

DCH Production at LHC

β's are small in realistic modelsYukawa couplings (to quarks) is<< gauge coupling

$$v_{L} << v_{R}$$

$$v_{L} \le 9 G e V$$

$$g_{R} \sim g_{L}$$

$$M_{w_{R}}^{2} \sim g_{R}^{2} (2v_{R}^{2} + k_{1}^{2})$$

K. Benslama

DCH Decay Modes

In lowest order the doubly charged scalar can decay via the following channels:

 $W^+_{R,L}W^+_{R,L}\delta^0$ $\Delta_{R,L}^{++} \rightarrow l^+ l^{'+}$ $\Delta_{R,L}^{++} \rightarrow W_{R,L}^{+} W_{R,L}^{+} h^{+} h^{+} \delta^{0}$ $h^+h^+h^0$

Kinematically Suppressed or disallowed

Experimental Status

- / Tevatron Results:
 - Limits on L-handed Higgs have gone up to ~ 130 GeV
 - Limits on R-handed Higgs have gone up to ~ 113 GeV
- LEP Results
 - Mass Limit ~ 100 GeV

Analysis Description

3 3	Parameters: <i>M</i>	$_{H_L^{++}} = 300, 400, 50$	0,600,700,800 <i>G</i>	eV
3	v_L	$= 5,9 \; GeV$	<i>e</i> μ τ	
3	Leptonic coupling:	1 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 1	
10 10 10	<u>Signals:</u>			
3	$\Delta_L^{++} \to \ell^+ \ell^+ \qquad l$	$= e, \mu$	$\Delta_L^{*+} \rightarrow \tau^+ \tau^+$,	$\tau \rightarrow l \nu \nu$
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Background:	$Wt\bar{t}, W^+W^+(QC)$	$D), W^+W^+(EW),$	$WZqq, t \overline{t}$
3	K. Benslama	TeV4LHC Higgs Worl	king Group	

02/04/2005

6

Cross Section Summary

++

 $\sigma \times BR$ (fb)

Signal cross section:

$Mass_{\Phi^{++}}$	(GeV)	σ (fb) for ν_L =5GeV	σ (fb) for $\nu_L=9$ GeV
	300	1.75	5.68
	400	1.14	3.69
	500	0.77	2.50
	600	0.56	1.82
	700	0.42	1.33
	800	0.32	1.02

Number of Events

Backgrounds cross

 $pp \rightarrow Wt\bar{t}$ 200 000 2337 100 000 $qq \rightarrow W^+W^+ qq$ 28.6 $qq \rightarrow WZqq$ $27\,000$ P_t 10-200 GeV 8 000 000 90 800 $qq \rightarrow$ P₄ 200 GeV-∞ 2 000 000 14 100

> The gauge bosons were required to decay leptonically

section:

TeV4LHC Higgs Working Group

Background

7

K. Benslama

100 fb 1	Δ^{++}	Δ^{++}	total backg
1-01	300 GeV	800 GeV	
Isolated leptons	330 (384)	59 (69)	133/13
$ \Delta \phi_{\ell\ell} > 2.5 $	253 (289)	56 (65)	75/8.3
$\Delta_{P_T^{ll}} > \left(\frac{M_{ll}}{2} + 50\right)$	220 (260)	50 (59)	37/2.5
Fwd Jet tagging	156(185)	40 (47)	17/1.4
ptmiss	152(180)	34 (40)	3.0/0.1

Nb of Events after each cut

Discovery reach

 $\rightarrow \tau^+ \tau^+$

Signal: consider $\Delta_L^{++} \rightarrow \tau^+ \tau^+ \rightarrow l^+ l^+ P_{miss}^T + X$

Backgrounds : $W t \overline{t}, W^+W^+qq, WZqq, t \overline{t}$

Leptons Cuts:

nlep = 2 $P_{T}^{lep} > 25 \ GeV$ $M_{l_1 l_2} > 30 \, GeV$

 $0 < x_{l_1}, x_{l_2} < 1$

Jets Cuts:

» b-jet Veto

Forward Jet Tagging

K. Benslama

TeV4LHC Higgs Working Group

 $m_{\tau^{+}\tau^{+}}^{2} \approx \frac{2 p_{l} \cdot p_{l}}{x_{l_{1}} x_{l_{2}}}$

100 fb 1	Δ^{++}	Δ^{++}	total backg
100 10-1	300 GeV	800 GeV	
Isolated leptons	42 (54)	10.1(13.4)	707/299
$0 < x_1, x_2 < 1$	40 (47)	9.6 (12.0)	480/222
no b jet	38 (46)	9.1 (11.5)	158/100
Fwd Jet tagging	18 (22)	4.3 (5.8)	33/23
$M_{ll} > 30 \text{ GeV}$	15 (16.3)	3.8 (4.8)	23/16

Nb of Events after each cuts

Discovery reach

$\Delta_L^{*+}\Delta_L^{--} \longrightarrow l^+l^+l^-l^-$

(a) 100 fb-1 (b) 300 fb-1

Full = 3 leptons are observed

Dashed =4 leptons are observed

K. Benslama

Right Handed DCH

Signal cross section:

$M(W_R^+)$	$M(\Delta_R^{++})$						
	300	500	800	1000	1500		
650	7.9	4.6	2.2	1.4	0.45		
750	4.7	2.8	1.4	0.87	0.31		
850	2.9	1.8	0.90	0.58	0.21		
950	1.9	1.2	0.61	0.40	0.15		
1000	1.6	0.98	0.50	0.33	0.12		
1050	1.3	0.81	0.42	0.28	0.11		
1500	0.30	0.20	0.11	0.074	0.029		

(1)

Backgrounds cross

section:

Background	Number of Events	$\sigma \times BR$ (fb)	
$pp \rightarrow W t \bar{t}$	200 000	23	
$qq \rightarrow W^+W^+ qq$	100 000	37	
$qq \rightarrow WZqq$	27 000	28.6	
$qq \rightarrow t\bar{t} P_t \text{ 10-200 GeV}$	8 000 000	90 800	
$qq \rightarrow t\bar{t} P_t \ 200 \ GeV-\infty$	2 000 000	14 100	

The gauge bosons were required to decay leptonically

TeV4LHC Higgs Working Group

02/04/2005

14

(2)

 $\rightarrow \tau^+ \tau^+$

	Δ^{++}	Δ^{++}	$W^+W^+ qq$	$W t\bar{t}$	WZqq	tt	total backg
	300 GeV	$800~{\rm GeV}$					
Isolated leptons	44 (49)	20 (23)	153/80	13/5.1	12/0.7	486/137	707/234
$0 < x_{\tau 1}, \ x_{\tau 2} < 1$	44 (46)	20(21)	84/60	6.4/3.3	8.0/0.7	360/101	480/171
no b-jet	42 (44)	18(21)	84/59	0.2/0.2	7.2/0.7	62/16	175/83
Fwd Jet tagging	36 (34)	16 (18)	21/15	0/0	2.3/0	20/7.4	45/23
$E_T^{miss} > 150 \text{ GeV}$	23 (25)	13 (15)	5.2/7.2	0/0	0.8/0	2.5/2.1	8.6/9.3

02/04/2005

16

Dashed = 4 leptons are observed

Full = only 3 leptons are observed

(a) 100 fb-(b) 300 fb

K. Benslama

Summary

DCH predicted in the LR Symmetric Model should yield a striking signature at LHC

LHC will be able to probe a large region of unexplored parameter space in the triplet Higgs sector

Validation of the present analysis using full simulation has already started.

Full Simulation Studies

Signal: $M(\Delta_L^{++}) = 500 \text{ GeV}; \Delta^{++} \rightarrow e^+ e^+$

Backgrounds:

qqww with leptonic decays of both w's

Event Selection:

Two same signe high Pt electrons

x

TeV4LHC Higgs Working Group 02/04/2005

H. Pt Electrons reconstruction at ATLAS

K. Benslama

3 longitudinal samplings Fine granularity:

- sampling 1 : ~ 6 X0, $\Delta \eta \times \Delta \phi \sim 0.003 \times 0.1$
- sampling 2 : ~ 18 X0 $\Delta \eta \times \Delta \phi \sim 0.025 \times 0.025$
- sampling 3 : ~ 6 X0 Δη × Δφ ~ 0.05 × 0.025

good energy resolution

 $\sigma(E)/E \sim 10\%/\sqrt{E} \oplus 0.7\%$

excellent angular/position resolution and particle identification capability

Sliding window algorithm. For each cluster the best ID track is searched for within a given E/P range. Cuts: Had. Leakage, shower shape, first samp. TeV4LHC Higgs Working Group 20

TeV4LHC Higgs Working Group 02/04/2005

Signatures depends on NLSP

Need to implement and validate MC generators