Higgs + 1 jet Signatures

Yaquan Fang, Bruce Mellado, William Quayle and Sau Lan Wu University of Wisconsin-Madison

TEV4LHC Workshop, BNL Higgs Session 02/04/05

Outline

Introduction

- **Combined** $H \rightarrow \gamma\gamma + \ge 0$ jet and $H \rightarrow \gamma\gamma + \ge 1$ jet Analysis
- **↓New discovery channel: H→ττ+≥1jet**
- \downarrow New discovery channel: $H \rightarrow WW^{(*)} + \geq 1$ jet
- Calibrating Forward jets

Utlook

Combined $H \rightarrow \gamma\gamma + \ge 0$ jet and $H \rightarrow \gamma\gamma + \ge 1$ jet Analysis

Motivation

Analysis of $H \rightarrow \gamma \gamma + 1$ jet was proposed by S.Abdullin et al. (Phys. Lett. B431: 410, 1998)

> Applied in ATLAS by V.Zmushko

* ATL-PHYS-1999-014 and ATL-PHYS-2002-020

>Recent re-analysis by Wisconsin

An important question was not addressed:

> Is $H \rightarrow \gamma \gamma + 1$ jet, an alternative or a default analysis? * Can the inclusive and $H \rightarrow \gamma \gamma + 1$ jet analysis coexist?

Search for $\gamma\gamma$ resonances are most optimal when $H \rightarrow \gamma\gamma + \ge 0j$ and $H \rightarrow \gamma\gamma + jets$ are combined

Optimization of Combined Analysis

Four variables in the signal significance optimization $P_{T\gamma1}$, $P_{T\gamma2}$, P_{TJ} and $M_{\gamma\gamma J}$

Optimization

Mass(GeV)	$P_{T\gamma1}(\text{GeV})$	$P_{T\gamma 2}(\text{GeV})$	$P_{TJ}(\text{GeV})$	$M_{\gamma\gamma J}({ m GeV})$
110	45	25	20	348
120	45	25	20	356
130	<mark>تت</mark> 45	25 ⁱⁱⁱ	20	386
140	45	25	20	448

Effective cross-sections in $\pm 2\sigma$ window

	Mass	Signal: $gg \to H$	Signal: VBF	Bkg: Real $\gamma\gamma j$	Bkg: Fake $\gamma\gamma j$	Significance
(GeV)	(fb)	(fb)	(fb)	(fb)	
110	Н→үү+0ј	24.16	1.68	1152.16	112.42	3.76
	(Н→үү+1ј	4.66	1.61	33.91	10.36	
120	Н →үү+0ј	23.97	1.83	803.63	90.77	4.52
	Н→үү+1ј	5.25	1.89	29.89	9.17	
130	Н →үү+0ј	22.37	1.94	598.08	79.20	4.81
	Н→үү+1ј	4.69	1.82	22.93	6.59	
140	Н→үү+0ј	18.35	1.94	454.17	68.89	4.39
	Н→үү+1ј	3.15	1.35	13.44	4.22	

Optimization (cont)

B. Mellado, TEV4LHC Workshop, BNL 02/04/04

B. Mellado, TEV4LHC Workshop, BNL 02/04/04

Overview and Plans for Combined $\gamma\gamma$ Analysis

4 Most optimal way of searching Higgs with $\gamma\gamma$ is to combine $H \rightarrow \gamma\gamma + \ge 0j$ and $H \rightarrow \gamma\gamma + \ge 1j$ analysis

>Enhances significance by at least 30%

Enhancement will grow because of a number of factors, which will be addressed with full simulation

*Resolution $\gamma\gamma$ improves with Higgs P_T *Photon efficiency improves with $P_{T\gamma}$ (ID relaxation for large $P_{T\gamma}$) *Well defined vertex with in $\gamma\gamma$ j final state * $\gamma\gamma$ j Analysis has more kinematic variables to use in multivariate analysis

B.Mellado, W.Quayle and Sau Lan Wu (hep-ph/0406095) Accepted by referee in PL

LO effective cross-sections ($M_{H}=120 \text{ GeV}$)

Cut	$gg \to H$	VBF H	$pp \to Z/\gamma^* + X$			$pp \to t\overline{t} + X$
а	74.40	11.04	10.44×10^{3}	10.44×10^{5}	43.22	$5.60{ imes}10^3$
b	67.20	10.22	10.32×10^{3}	10.39×10^{4}	41.84	1760
с	47.3	8.91	5690	2.34×10^{4}	32.13	350
d	26.51	8.57	1870	2440	31.40	347
е	16.73	4.93	1030	1370	12.21	46.43
f	1.72	2.05	81.6	25.2	3.38	16.66
g	0.43	0.76	3.22	0.60	1.11	5.48
	0.32	0.59	0.38	0	0.11	0.41

Signal Significance for 30 fb⁻¹

(M_H=120 GeV 10% systematic error on background)

Higgs Mass (GeV/c^2)	110	120	130	140	150
Signal Significance for cut analysis (σ)	4.3	5.0	4.8	3.6	2.1
Signal Significance for NN analysis (σ)	5.5	6.6	6.3	4.8	2.8

Overlap With H+≥2jets (VBF)

D.Zeppenfeld, D.Rainwater, et al. proposed to search for a Low Mass Higgs in association with two jets

Overlap With H+2jets (VBF)

Fraction of signal events in H+1j analysis that pass H+2j analysis after successive cuts

	Tagging Jets	Central jet veto	∆φ _{jj} <2.2	Other Cuts
VBF	62%	57%	47%	44%
ggh	17%	15%	13%	13%

With conservative K factors the overlap is 24%

> Higher order corrections on ggh are large

Under investigation in collaboration with SHERPA authors

H+1j and H+2j (VBF) analyses should run in parallel, adding significant power to H->ττ

From my talk at Higgs session of TEV4LHC 17/09/04

4 Two independent ways of extracting $Z \rightarrow \tau\tau$ shape

Shape of $M_{\tau\tau}$ in $Z \rightarrow \tau\tau$ (Method I)

All cuts are kept the same except for the invariant mass of the Higgs candidate and the tagging jet

- > Assume electrons, muons, jets and missing E_T have been calibrated with Z \rightarrow ee, $\mu\mu$
- > Jet activity in MC is validated with $Z \rightarrow ee, \mu\mu$ *Go from Box 1 to Box 3

 \succ Use MC to obtain $M\tau\tau$ shape in signal-like region

Shape of $M_{\tau\tau}$ in $Z \rightarrow \tau\tau$ (Method I)

Shape of M_{ττ} stable with M_{ττ}

- Changes in spectrum can be corrected with MC
- Need to verify this statement with full simulation

Shape of $M_{\tau\tau}$ in $Z \rightarrow \tau\tau$ (Method II)

- ↓Use data with Z→ee,µµ and apply same cuts on jets as in the signallike region.
- Remove the two electrons/muons (both calorimeter and tracking) and replace them with τ's, which have the same momenta
 - Needs to be tested with full simulation at ATLAS

Normalization of $Z \rightarrow \tau \tau$ using $Z \rightarrow ee, \mu \mu$

4 Z \rightarrow ee,µµ offers about 35 times more statistics w.r.t to Z \rightarrow t τ \rightarrow II

 \succ Ratio of efficiencies depends weakly with $M_{\rm HJ}$ and can be easily determined with MC after validation with data

B. Mellado, TEV4LHC Workshop, BNL 02/04/04

$$H \rightarrow WW^{(\star)} + \geq 1$$
 jet

B.Mellado, W.Quayle and Sau Lan Wu to be submitted to journal

Use basic property that leading jet associated with Higgs is tends to be more forward than in QCD backgrounds

Control samples in data well defined

W.Quayle will elaborate on this point during next workshop at CERN

- Three non-overlapping analysis defined
- Background subtraction using data

Luminosity for 50 01 05

10

 $H \rightarrow WW^{(\star)} + \geq 2 jet$

Working plots with updated statistical method

B. Mellado, TEV4LHC Workshop, BNL 02/04/04

🗕 qqH→ qqWW

– qqH→ qqττ

 $H \rightarrow ZZ \rightarrow 4I$ ttH,H \rightarrow bb

H→ WW→ lv lv
 Combined

Η→γγ

L dt=30fb⁻¹

Calibrating Forward Jets

P_{TJ} > 30GeV /η /> 2.5 *central jet veto*

↓ Used SHERPA to generate Z→ee in association with at least one jet. Use P_T balance between Z→ee and leading jet to calibrate forward jets
 > The addition of extra legs to model sub-leading jets changes the position of the peak by less than 2%

*Gives upper bound on theoretical errors

Outlook and Plans

- **Combined** $H \rightarrow \gamma\gamma + \ge 0j$ and $H \rightarrow \gamma\gamma + \ge 1j$ enhances signal significance by at least 30%
- **Inclusion of new channel**, $H \rightarrow \tau \tau + \ge 1j$, enhances further the power of $H \rightarrow \tau \tau$ channels
 - Pursue combined analysis of H→ττ→ll+≥1j, H→ττ→ll+≥2j and H→ττ→lh+≥1j, H→ττ→lh+≥2j
- **↓**Assessed new discovery channel: H→WW^(*)+≥1j
 - Combination of H→WW^(*) with Oj, ≥1j and ≥2j, as three non-overlapping analyses enhances tremendously sensitivity to Higgs

<u>Re-evaluate the ATLAS significance with combined</u> <u>H+0,1,2j analyses with full simulation</u>