Higgs and Vector Boson Fusion

B.Mellado University of Wisconsin-Madison

TEV4LHC Workshop, BNL 02/03/05

Outline

Introduction SM Higgs at the LHC >Feasibility of Inclusive searches >Higgs Associated with Hadronic Jets *Signal Extraction Feasibility of Coupling Measurements **MSSM** Higgs *Hevatron-LHC* Connection **4**Outlook and Conclusions

SM Higgs (1)

Standard Model:

- Huge success in describing the world of elementary particles
- Many properties of quarks, leptons and forces carriers well established
- Agent of spontaneous electro-weak symmetry breaking, the Higgs, not observed yet!

Masses are in MeV

SM Higgs (2)

Direct searches at LEP

- Some excess of events consistent with M_H=115 GeV
- Placed 95% CL exclusion limit at M_H=114 GeV

Global fit to data

- Electro-weak parameters sensitive to Log(M_H)
- With new measurement of top mass at Tevatron

☆M_H=117 GeV with 251 GeV 95% CL exclusion limit

Direct Higgs searches remains main focus at LHC

Cross-sections at LHC

- Search for Higgs and new physics hindered by huge background rates
 - Known SM particles produced much more copiously
- This makes low mass Higgs specially <u>challenging</u>. Need to rely on
 - >Narrow resonances
 - Complex signatures
 - Higgs in association with top and jets.

Main Production Mechanisms at the LHC

F.Wilczek PRL39 (1977) H.M.Georgi, S.L.Glashow, M.E.Machacek and D.V.Nanopoulos PRL40 (1978)

R.Cahn and S.Dawson PL 136B 196 (1983)

SM Higgs at the LHC

Main Decay Modes

SM Higgs via ttH

Background extraction is hard

With systematic errors, potential seriously diminished

SM Higgs, $H \rightarrow \gamma \gamma$

SM Higgs, H->ZZ->4

Very clean signature

- >Narrow resonance
- Small background contribution

4 Main experimental issues

≻ Lepton isolation
 ☆Zbb and ttbb rejection
 ♣ Good for discovery in wide
 Higgs mass range
 > 120 < M_H < 600 GeV

Higgs in Association with Hadronic Jets (or with jet veto)

SM Higgs + \geq 2jets at the LHC

 D.Zeppenfeld, D.Rainwater, et al. proposed to search for a Low Mass Higgs in association with two jets with jet veto
 Central jet veto initially suggested in V.Barger, K.Cheung and T.Han in PRD 42 3052 (1990)

SM Higgs + ≥ 1 jet at the LHC

$H \rightarrow WW^{(\star)}$ with Jets (or with jet veto)

$H \rightarrow WW^{(\star)} + \geq 2jet$

Most powerful decay channel for 125<M_H<180 GeV Background: pp->WW+X, including tt production

Background suppression:

Jet veto (b-jet veto)
Lepton angular correlations
Jet angular correlations

Most powerful decay channel for 125<M_H<180 GeV

>Three non-overlapping analysis defined

Luminosity for 50

10

>Background subtraction using data

$H \rightarrow \tau \tau$ with Jets

Carries about 50% of sensitivity of LHC experiments for a Higgs close to the LEP Limit

↓ Two independent ways of extracting Z→ττ shape > Data driven and MC driven > Similar procedure has been defined for H→WW^(*)

Coupling Measurements and MSSM Higgs

Extraction of Couplings

ATLAS attempted a model independent global fit to crosssections of known channels to extract Higgs couplings

>Big role of Higgs searches associated with two hard jets

	Production		Decay	mass ranges
-	Leeve t	Gluon-Fusion	$H \rightarrow ZZ \rightarrow 4l$	110 GeV - 200 GeV
	t t t $-$	$(gg \rightarrow H)$	$H \rightarrow WW \rightarrow l\nu l\nu$	110 GeV - 200 GeV
	30000- g		$H \rightarrow \gamma \gamma$	110 GeV - 150 GeV
-		WBF	$H \rightarrow ZZ \rightarrow 4l$	110 GeV - 200 GeV
	W, Z	(qq H)	$H \to WW \to l\nu \; l\nu$	110 GeV - 190 GeV
	WZ		$H \to \tau \tau \to l \nu \nu l \nu \nu$	110 GeV - 150 GeV
			$H \to \tau \tau \to l \nu \nu had \nu$	110 GeV - 150 GeV
			$H \rightarrow \gamma \gamma$	110 GeV - 150 GeV
	eeco	$t\bar{t}H$	$H \to WW \to l\nu \ l\nu \ (l\nu)$	120 GeV - 200 GeV
-			$H \rightarrow b\bar{b}$	110 GeV - 140 GeV
	Ē		$H \to au au$ (not included)	110 GeV - 150 GeV
	300g t		$H \rightarrow \gamma \gamma$	110 GeV - 120 GeV
	W Z	WH	$H \to WW \to l\nu \ l\nu \ (l\nu)$	150 GeV - 190 GeV
			$H \rightarrow \gamma \gamma$	110 GeV - 120 GeV
	q'	ZH	$H \rightarrow \gamma \gamma$	110 GeV - 120 GeV

M. Duhrssen ATL-PHYS-2003-30

Extraction of Couplings (cont)

Relative Branching Ratios

Relative Couplings

MSSM Higgs

Minimal super-symmetric extension of Higgs sector

- > Five Higgs: h (light), H, A, H[±] (heavy)
- > Parameter space reduced to two: M_A , tan β
- > Theoretical limit on light MSSM Higgs: h<135 GeV

MSSM Higgs (cont)

Large multiplicity of discovery modes:

>SUSY particles heavy:

- ***SM-like:** $h \rightarrow \gamma\gamma$, bb, $\tau\tau$, WW; $H \rightarrow 4I$
- *MSSM-specific: A/H \rightarrow µµ, $\tau\tau$,tt; H \rightarrow hh, A \rightarrow Zh; H $^{\pm}\rightarrow\tau^{\pm}\nu$
- SUSY accessible:

 $\bigstar H/A \rightarrow \chi^0_2 \, \chi^0_{2,} \, \chi^0_2 \rightarrow h \, \chi^0_1$

Small impact on Higgs branching ratio to SM particles
Consider different MSSM scenarios

>Different upper limits to light MSSM Higgs (h)

B. Mellado, TEV4LHC Workshop, BNL 02/03/05

25

MSSM Higgs and VBF

Central role of VBF distinguishing between SM and MSSM h via extraction of couplings

Zeppefeld et.al. Phys.Rev. D70 (2004) 113009

The Connection Between the Tevatron and the LHC

Major Experimental Issues (1)

ttH, H->bb	80 <m<sub>H<120</m<sub>	b-tagging, jet calibration
H->γγ (+0,1,2 jets)	100 <m<sub>H<150</m<sub>	γ calibration, γ /jet separation
H->ZZ*, Z->4I	120 <m<sub>H<180</m<sub>	Lepton isolation, efficiency
H->ττ, τ->l,h (+1,2 jets)	110 <m<sub>H<150</m<sub>	ττ reconstruction VBF issues, Ptmiss
H->WW* W->lv,qq (0,1,2 jets)	110 <m<sub>H<180</m<sub>	Lepton isolation VBF issues, Ptmiss

Major Experimental Issues (2)

H->ZZ, Z->4I	180 <m<sub>H<600</m<sub>	Lepton isolation, efficiency
H->ZZ, Z->IIvv	500 <m<sub>H<1000</m<sub>	Lepton isolation, Ptmiss, forward jets
H->WW* W->lv,qq (+2 jets)	180 <m<sub>H<1000</m<sub>	Lepton isolation VBF issues, Ptmiss
H->ZZ, Z->llqq (+2 jets)	180 <m<sub>H<500</m<sub>	Lepton isolation VBF issues

Tevatron/LHC Connection

Tevatron will help understand faster experimental and theoretical issues at the LHC (already highlighted in at first workshop)

- > Lepton identification, jet algorithms, missing E_T reconstruction, b-tagging, τ reconstruction, etc...
- > Background studies
 - *Better theoretical understanding of $\gamma\gamma$ continuum
 - *W/Z production + jets, jet veto (Zeppenfeld plots)

Central point in this Tevatron/LHC connection

*Top production, tt+jet, flavor content of jets associated with tops.

*Underlying event, pile up.

- > Parton density functions
- ≻Etc..

Outlook and Conclusions

- **4** The search of a SM Higgs at the LHC is robust
 - > A SM can be observed with multiple channels
- Higgs in association with jets will play a central role in the observation of a light Higgs at the LHC
 - > Use event topology to suppress QCD backgrounds
 - > Well defined data driven background subtraction
- The identification of Higgs via VBF is fundamental to extract Higgs couplings

> Helps distinguish between SM and MSSM light higgs

4 The connection between Tevatron and LHC is vast

> Study of Z/W + jets is most relevant