

TeV4 LHC Workshop	QCD and Hadronic Calibration at LHC Slide 6				
Jet Physi	ics	at LHC			
jet cross section measurements allow tests of pertubative QCD in unexplored kinematic regions:		Process		σ (nb)	Evts/year (Λ=10 fb ⁻¹)
		$W \rightarrow e_V$		15	~10 ⁸
statistical errors are small -> systematic uncertainties from jet algorithm & trigger efficiency, jet energy scale (mostly linearity of calorimeter response), contributions from underlying event and pile-up, and luminosity (~5%);		$Z \rightarrow e^+ e^-$		1.5	~107
		tŦ		0.8	~107
			p, > 200 Ge	/ 100	~109
	OT	Inclusive	pt > 1 TeV	0.1	~106
		Jet Production	p _t > 2 TeV	10-4	~103
			p _t > 3 TeV	1.3×10 ⁻⁶	~10
several "calibration channels" for jets (W with high statistics $\rightarrow \sim 1\%$ systematic error possible (see comments later!); measurements best done in initial low lum minimize effects from pile-up events; ATLAS measures jets with $\sigma_{\rm E}/{\rm E} \approx 50(60)$ in the central (endcap) calorimeters (example	/->jj on e ninos 1%/√ e);	, Z+jj) avai nergy scale ity running E(GeV) ⊕1	lable 2 (,,,,) to 5(3)%	dσ/dQ ² d	(log(1/x)) 300 fb ⁻¹ 100 evts bin

 \oint also Drell-Yan processes (no final state QCD radiation!) help to constrain the proton structure at $Q^2 \approx m_{cl}^2$

TeV4 LHC Workshop	QCD and Hadronic Calibration at LHC Slide 11	Peter Loch University of Arizona Tucson, Arizona 85721				
Hadronic Calibration						
depending on physics, requirements and resolution, missing transverse energy 0.5% for top mass, O(1%) for QCD jet j	on hadronic calibration (jet en gy scale and resolution) can be physics and jets in SUSY ever	nergy scale error e stringent: typically its				
 this is by no means easy to achieve - 1% systematics for selected physics, ty LHC! 	running experiments at Teva pically "few" % in less hostile	tron, HERA at best environments than				
🕴 🙀 typical contribution to hadronic fina	l state reconstruction:					
detector effects - both ATLAS and of	CMS feature non-compensating co	lorimeters with typical				
 e/h = 1.3-1.6; control of physics environment contristate objects like jets; 	ibution (underlying event) to fully	reconstructed final				
 suppression of pile-up contribution (~ history from previous bunch crossings, like missing transverse energy; 	•23 in-time minimum bias events o ATLAS) to these objects and glob	n average, + signal oal event measurements				
 suppression of incoherent and cohere cananal dataston inafficiencies (data 	ent thermal noise in calorimeters;					
 general defector metriciplicity (detail algorithm biases especially in jet find 	ling;					
some observations, ideas, and strate	gies to address these challen	ges (this is really				

Peter Loch QCD and Hadronic Calibration at LHC TeV4 LHC Workshop University of Arizona Tucson, Arizona 85721 Uh Slide 15 Jet Calibration Normalization 🌵 particle level clustering effects clearly contribute to fluctuations in the truth reference for the calibration -> inefficient jet finding in both signal spaces, jet matching; 🤹 can be unfolded by special simulation (pre-selection of particles within QCD di-jet events); 🕴 physics provides calibration events with mass constraints in hadronic W decays or events with well calibrated electromagnetic systems balancing the hadronic final state (Z+jets, direct photon production) in transverse energy -> in-situ calibration; 🗛 but care is required: not obvious to extract universal jet calibration from these very specific final states, clearly limits in control of systematics (ISR/FSR, physics environment, isolation of electromagnetic signals/jets...); 6 also change of normalization base -> particle to parton level;

10.0

5.0

0.0

-5.0

(E_{rec} - E₀)/E₀ [%]

-10.0 10