DISENTANGLING SUSY MODELS WITH EXPERIMENT

ROBERT KEHOE

TEV4LHC WORKSHOP

FEBRUARY 4, 2005

Use of Observables

- SINGLE OBJECT MEASUREM
- BACKGROUNDS

SOUTHERN METHODIST UNIVERSITY DEPARTMENT OF PHYSICS

FINAL COMMENTS

THE CHARGE

- <u>many</u> SUSY variants
- two questions
 - how produce a general search which is optimally sensitive ac many models?
 - how use experimental measurements to distinguish model operating in nature?
- consider Binetruy, et al., hep-ph/0312248
 - take all measurements in conjunction (collider, cosmol., EWSE to nail down model
 - concentrate on observables which are directly obtained in detectors
 - model independent

OBSERVABLES

hep-ph/0312248

twelve models

- pick parameter points which are thought to be representative of wid ۲ range within each model
- observe rates and kinematic distributions •
 - interpretation of results: model dependent

inclusive signatures

- Etmiss, •

- isolated pi+/-, get $N_1\pi^{\pm}$, pt > 2 GeV
- trilepton
- same-sign dilepton
- opposite sign dilepton
- tau rich
- b rich
- long-lived (N)LSP

> 100 GeV • prompt gamma, get $N_1\gamma$ or $G\gamma$, isolated w/Pt > 20 GeV

INCLUSIVE SAMPLE

hep-ph/0312248

•	assume 10 fb-1		
•	select events with		
	 Etmiss > 100 GeV 		
	 Ptj2 > 100 GeV 		
		<u>SM</u>	<u>mSUG</u>
•	count # of events with these cuts	100k	60k
	 + 1 lepton 	13k	17k 🦽
	 opposite sign dilepton 	7k	6k 🛷
	 same sign dilepton 	20	1300
	 trilepton 	60	740
	 #s significantly model-dependent 		

- consider also kinematic distributions, eg. Ht or St ('meff')
- may do likelihood or other fit across experimental measurements ascertain SUSY parameters

JETS AND ETMISS

- jet energy scale
 - wide range of energies correct to get calibrated Etmiss
 - systematic uncertainty influences #BG pass cut
 - in situ methods:
 - γ+jet (D0)
 - single particle (CDF)
- jet energy and Etmiss resolution
 - primary issue is non-Gaussian tail
 - need to be monitoring for data quality
 - much experience at Tevatron for this
 - crucial element for these kinds of searches
- need to ascertain extent to which BGs susceptible to miscalibratio and resolution tails

LEPTONS AND **b**-QUARKS

- electrons
 - require highly effective rejection against pi0 jets
 - eg. multiparameter likelihood discriminant (D0)
 - requires understanding of correlation of input parameters
- muons
 - impact of poorly measured tracks on momentum measurement
 - translates into Etmiss also
- tau's and b's
 - need to provide optimal vertex reconstruction
- methods to estimate fake lepton and mis-tagged jets well-establish at Tevatron

MULTIJET AND W/Z BACKGROUNDS

multijet backgrounds

- all characteristics (Etmiss, leptons, vertices) must be faked
- what is pass rate for Etmiss selection, and how dependent on resolution and tails?
- how well understand lepton instrumental backgrounds?
 - eg. 3 jet + Etmiss => 2 jet + 'e' + Etmiss

• W and Z

- need to understand Etmiss faking in Z events
- ascertain how well can model high Pt jets
 - MC generator comparison to Tevatron data with maximum luminosity

TOP BACKGROUNDS

- can contribute at almost all levels
 - particularly issue for opposite-sign dilepton
- a good understanding of all single object systematics will be important, perhaps most importantly
 - lepton efficiencies
 - b-tagging efficiencies
 - jet kinematic distributions at high Pt
- Tevatron provides only way to cross check event generator for kinematic distributions

More General Issues

- what can do with less luminosity, eg. 1 fb-1?
 - appears that #events for various scenarios still enough that sensitivity different parameters is present
 - simulation study is needed for this
 - demands stable, effective reconstruction; optimal not needed
- examine validity of signatures across parameter space within mod
- what is best way to benefit from exclusive measurements
 - specific final states may allow measurements which can narrow the f
- overall optimization of search strategy in face of realistic detector simulation necessary
 - eg. grid search vs. multiparameter discriminants like NN to get optin inclusive and other selection

thank you to Gordon Kane, Frank Paige