Electroweak bosons rapidity distributions at hadron colliders

Kirill Melnikov

University of Hawaii at Manoa

with Babis Anastasiou, Lance Dixon, and Frank Petriello

TeV4LHC, BNL, February 2005.

Outline

- Introduction
- Method
- Results
 - ^o Dilepton rapidity distribution for E866: sea quark distributions in the proton;
 - $^{\circ}$ W, Z production at the Tevatron and the LHC precision QCD at hadron colliders.
- Conclusions

- LHC is the next big step in particle physics;
- Experiments of unprecedent complexity;
- Typically, bad signal to backrground ratios; cuts on the final states;
- Huge rates for Standard Model processes;
- Theoretical estimates for signals and backgrounds rely on "perturbative" QCD;
- QCD for hadron collider physics includes a variety of things:
 - parton distribution functions (PDFs);
 - [○] jet algorithms;
 - hadronization models;
 - Monte Carlo event generators;
 - perturbative calculations.
- These issues are mutually interconnected.

- Processes at hadron colliders can be classified as:
 - Clean, well-studied processes with large cross-sections (calibration, model-independent searches for new physics);
 - Important discovery processes with small cross-sections, submerged into large background (Higgs production);
 - Processes with many particles in the final state; backgrounds for dedicated new physics searches;
 - QCD processes with large cross-sections and large uncertainties (two jet cross-section, heavy flavor production etc.).
- For all of these cases NLO QCD is obligatory; for some NNLO QCD is desirable:
 - at NNLO, one gets for the first time an honest estimate of the theoretical uncertainty: absolutely necessary for calibration processes;
 - For discovery channels, one can get better signal to background ratio (Higgs production);
 - leads to a better understanding of the underlying structure of the theory; may result in important lessons for other processes and methods (resummations).

- Production of electroweak bosons is an important process:
- The first application of parton model ideas beyond DIS;
- Discovery of W and Z bosons;
- W mass and width measurements;
- charge assymmetry;
- Excess in dileptons at large invariant masses is a universal new physics signal (Z', extra dimensions, compositness).
- rapidity distribution permits measuring PDFs:

$$\frac{d\sigma}{dY} \sim q\left(\frac{m_{\gamma}^*}{\sqrt{s}}e^Y\right)\bar{q}\left(\frac{m_{\gamma}^*}{\sqrt{s}}e^{-Y}\right) + \mathcal{O}(\alpha_s)$$

Recent results from E866 at FNAL on dilepton pair production at $\sqrt{s} = 40 \text{ GeV}$ at hydrogen and deuterium targets;

- Huge rates at the LHC: $W \to l\nu \to 15$ events/sec, $Z \to l^+l^- \to 1.5$ events/sec.
- if rapidity of Z and W is measured, possible partonic luminosity monitor at the LHC.
 Dittmar, Pauss, Zürcher

- For γ^*, Z, W production a complete control of the final state kinematics is desirable; ideally, partonic level Monte Carlo through $\mathcal{O}(\alpha_s^2)$. It is still in a distant future (see, however, my talk on the Higgs production).
- What is available?
 - Total cross-section to $\mathcal{O}(\alpha_s^2)$. Hamberg, van Neerven, Matsuura (1990)
 - p_{\perp} distirbution at $\mathcal{O}(\alpha_s^2)$ and resummed;
 - Ο rapidity distribution at $\mathcal{O}(\alpha_s)$
- Poor man's solution:

- Harlander and Kilgore (2002)
 - Collins, Soper, Sterman (1985);
 - Altarelli, Ellis, Martinelli 1979

rapidity distribution at $\mathcal{O}(\alpha_s^2)$ Anastasiou, Dixon, K.M. Petriello 2003

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{mod}}}{\mathrm{d}p_{\perp} \mathrm{d}Y} = \theta(p - p_{\perp}^{\mathrm{cut}}) \frac{\mathrm{d}^2 \sigma}{\mathrm{d}p_{\perp} \mathrm{d}Y} + \left[\frac{\mathrm{d}\sigma}{\mathrm{d}Y} - \int\limits_{p_{\perp}^{\mathrm{min}}}^{p_{\perp}^{\mathrm{max}}} \mathrm{d}p \frac{\mathrm{d}^2 \sigma}{\mathrm{d}p_{\perp} \mathrm{d}Y} \right] \theta(p_{\perp}^{\mathrm{cut}} - p).$$

NNLO rapidity distribution is the key to fully control the kinematics.

Method

- It took more than 20 years to go from $\mathcal{O}(\alpha_s)$ to $\mathcal{O}(\alpha_s^2)$ for $d\sigma/dY$. Why?
- Part of the reason is a misconception:
 - Common belief: complexity in higher orders originates from virtual loops;
 - In reality: complexity in higher orders originates from singular integration of tree level graphs.
- In a way, loops are simple, real emission is not.
- Loops are simple, because the structure is well-understood:
 - Integration-by-parts identities [Chetyrkin, Tkachov];
 - Automatic solution of recurrence relations [Laporta];
 - ^o Methods to compute master integrals [Smirnov, Tausk, Gehrmann, Remiddi].
- Can a similar understanding of the mathematical structure of real emissions be reached?

Method

- Key idea:
 - $^{\circ}$ Map phase-space \rightarrow loop integrals using the optical theorem:

$$\sum |T_{in}|^2 \sim \operatorname{Im}(T_{ii}).$$

- ^o Use multi-loop methods
- Total cross-section: the on-shell conditions

$$2\pi i\delta(P_{\gamma}^2 - m_{\gamma}^2) \rightarrow \frac{1}{P_{\gamma}^2 - m_{\gamma}^2 - i\delta} - \text{c.c.}$$

Rapidity distribution: create a 'fake' particle

$$2\pi i\delta\left(\frac{P_{\gamma}\cdot[p_1-up_2]}{P_{\gamma}\cdot p_2}\right) \to \frac{P_{\gamma}\cdot p_2}{P_{\gamma}\cdot[p_1-up_2]-i\delta} - \mathbf{c.c.}$$

 Since both, the on-shell and the rapidity constraints are polynomial in momenta, multiploop methods are applicable without any modification.

Method: rapidity master integrals

- IBP and recurrence relations express any relevant integral (out of 10⁶ that are needed) through few master integrals:
 - 5 V-V master integrals,
 - 5 R-V master integrals,
 - ^o 21 R-R master integrals.
- The process is characterized by a topology, not the particle content; as a consequence master integrals are the same for γ^* , W, Z, H etc. production;
- V-V and R-V master integrals are known two-loop or one-loop integrals "multiplied" by phase-space factors.
- R-R master integrals were unknown and hard to evaluate by a brute force

Method: differential equations

• Two kinematic variables: $m_{\gamma^*}^2$, $u \sim \exp(2Y)$. Form diff. eqs. (Kotikov, Gehrmann, Remiddi) for the "cut-integrals"

- Solve differential equations order by order in ϵ ;
- Boundary conditions can obtained from simple kinematic limits;
- Hierarchical solution: simpler master integrals are non-homogeneous terms in differential equations for more complicated master integrals;

Results: E866

- Measures rapidity distribution of the μ pairs in pp and pd collisions at $\sqrt{s} \approx 40 \text{ GeV}$ (fixed target)
- Sensitive to sea anti-quark distributions in the proton

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Y} \sim e_u^2 u(x_1)\bar{u}(x_2) + e_d^2 d(x_1)\bar{d}(x_2) + (x_1 \leftrightarrow x_2),$$

- \bar{u} and \bar{d} are not well-known for $x \sim 1$; E866 is sufficiently sensitive to study this issue.
- The NLO corrections are $\sim 40\%$ in the central Y region, the scale dependence is $\sim 20\%$.
- What about the NNLO corrections?
 - O Do they stabilize the theory prediction and by how much?
 - ^o Do they improve or make worse the quality of the theory/data comparison?
 - $^{\circ}$ Is it justified to use constant K-factor for all rapidities?

E866: DY rapidity distribution

- Substantial improvement in scale stability;
- NNLO distribution sharper in central rapidity regions (smaller factorization scales are appropriate);
- Too many anitquarks in the proton.

E866: DY rapidity distribution

• $d\sigma_{LO} \times K$ fails.

• $d\sigma_{\rm NLO} \times K$ is accurate to 1 - 3%.

E866: Alekhin PDFs

- Alekhin fits to DIS; DY rapidity distribution is the prediction.
- PDF uncertainties are large.

${\boldsymbol Z}$ at the Tevatron

- Unnaturally small scale dependence at LO (c.f. large shift from LO to NLO).
- The width of the NNLO band is 1%.
- Both Alekhin and MRST are consistent with the data (given the error bars).

${\cal Z}$ at the LHC

- Notice remarkable scale stability at NNLO (the width of the NNLO band is 0.2%.
- No uncertainty from perturbative QCD is left.

${\cal Z}$ at the LHC

• A more detailed investigation of the scale variation.

W^{\pm} at the LHC

- Very good stability; no QCD uncertainty.
- Different distribution shapes for W^{\pm} .
- W^{\pm} charge asymmetry is very stable agains higher order QCD effects and PDF uncertainties.

PDF uncertainties and the LHC

- Let us treat different PDFs (MRST, CTEQ, Alekhin) as different models; can we distinguish between them at the LHC given projected error bars?
- No, if the NLO QCD theory is used; the scale uncertainty is too large.

PDF uncertainties and the LHC

- With the NNLO QCD theory, the scale dependence is gone;
- This makes the PDF uncertainty the largest theory uncertainty.

Features of the result

- Huge (~ 90%) cancellation of $q\bar{q}$ and qg at NNLO; the gg becomes relevant.
- Large cancellation between "hard" and "soft" (universal) parts of the result;
 "soft" contributions do not dominate.
- No difference between slow and fast PDFs evolution; N³LO evolution kernels for DGLAP [Moch, Vermasseren, Vogt] do not have a large impact on the prediction.
- Small corrections at the LHC is the result of the cancellation of PDFs changes and the NNLO coefficient fucntion; both are relevant.
- The major theory uncertainty is due to PDFs.
- Numerical program VRAP http://www.slac.stanford.edu/lance/Vrap

Conclusions

- New method for NNLO calculations (real radiation) in QCD; applicable to many phenomenologically relevant applications;
- Rapidity distributions for γ^*, W, Z : first NNLO calculation of any distribution in QCD for collider physics.
- E866 data/theory: too many antiquarks in the proton at moderate x in existing PDFs; the \bar{d}/\bar{u} ratio at $x \ge 0.2$ is not correctly described; requires PDF re-fitting.
- QCD predictions for Z, W are possible with sub-percent precision; major uncertainty from PDFs;
- For the 1% precision, other effects like EW corrections have to be incorporated.
- Z and W production should become "standard candels" for the LHC and the Tevatron partonic luminosity monitoring.

PS. Fully differential calculations for W, Z production may be getting within reach. See my talk on the Higgs production.