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Outline

• Introduction

• Method

• Results
◦ Dilepton rapidity distribution for E866: sea quark distributions in the proton;
◦ W, Z production at the Tevatron and the LHC – precision QCD at hadron

colliders.

• Conclusions

Electroweak bosons rapidity distributions at hadron colliders – p.2/22



Introduction

• LHC is the next big step in particle physics;

• Experiments of unprecedent complexity;

• Typically, bad signal to backrground ratios; cuts on the final states;

• Huge rates for Standard Model processes;

• Theoretical estimates for signals and backgrounds rely on “perturbative” QCD;

• QCD for hadron collider physics includes a variety of things:
◦ parton distribution functions (PDFs);
◦ jet algorithms;
◦ hadronization models;
◦ Monte Carlo event generators;
◦ perturbative calculations.

• These issues are mutually interconnected.
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Introduction

• Processes at hadron colliders can be classified as:
◦ Clean, well-studied processes with large cross-sections (calibration,

model-independent searches for new physics);
◦ Important discovery processes with small cross-sections, submerged into

large background (Higgs production);
◦ Processes with many particles in the final state; backgrounds for dedicated

new physics searches;
◦ QCD processes with large cross-sections and large uncertainties (two jet

cross-section, heavy flavor production etc.).

• For all of these cases NLO QCD is obligatory; for some NNLO QCD is desirable:
◦ at NNLO, one gets for the first time an honest estimate of the theoretical

uncertainty: absolutely necessary for calibration processes;
◦ For discovery channels, one can get better signal to background ratio (Higgs

production);
◦ leads to a better understanding of the underlying structure of the theory; may

result in important lessons for other processes and methods (resummations).
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Introduction

◦• Production of electroweak bosons is an important process:

• The first application of parton model ideas beyond DIS;

• Discovery of W and Z bosons;

• W mass and width measurements;

• charge assymmetry;

• Excess in dileptons at large invariant masses is a universal new physics signal (Z′,
extra dimensions, compositness).

• rapidity distribution permits measuring PDFs:
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Recent results from E866 at FNAL on dilepton pair production at
√

s = 40 GeV at
hydrogen and deuterium targets;

• Huge rates at the LHC: W → lν → 15 events/sec, Z → l+l− → 1.5 events/sec.

• if rapidity of Z and W is measured, possible partonic luminosity monitor at the
LHC. Dittmar, Pauss, Zürcher
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Introduction

• For γ∗, Z, W production a complete control of the final state kinematics is
desirable; ideally, partonic level Monte Carlo through O(α2

s). It is still in a distant
future (see, however, my talk on the Higgs production).

• What is available?
◦ Total cross-section to O(α2

s). Hamberg, van Neerven, Matsuura (1990)
Harlander and Kilgore (2002)

◦ p⊥ distirbution at O(α2
s) and resummed; Collins, Soper, Sterman (1985);

◦ rapidity distribution at O(αs) Altarelli, Ellis, Martinelli 1979
◦ rapidity distribution at O(α2

s) Anastasiou, Dixon, K.M. Petriello 2003

• Poor man’s solution:
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• NNLO rapidity distribution is the key to fully control the kinematics.
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Method

• It took more than 20 years to go from O(αs) to O(α2
s) for dσ/dY . Why?

• Part of the reason is a misconception:
◦ Common belief: complexity in higher orders originates from virtual loops;
◦ In reality: complexity in higher orders originates from singular integration of

tree level graphs.

• In a way, loops are simple, real emission is not.

• Loops are simple, because the structure is well-understood:
◦ Integration-by-parts identities [Chetyrkin, Tkachov];
◦ Automatic solution of recurrence relations [Laporta];
◦ Methods to compute master integrals [Smirnov, Tausk, Gehrmann, Remiddi].

• Can a similar understanding of the mathematical structure of real emissions be
reached?
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Method

• Key idea:
◦ Map phase-space → loop integrals using the optical theorem:

∑

|Tin|2 ∼ Im(Tii).

◦ Use multi-loop methods

• Total cross-section: the on-shell conditions

2πiδ(P 2
γ − m2

γ) → 1

P 2
γ − m2

γ − iδ
− c.c.

• Rapidity distribution: create a ‘fake’ particle

2πiδ

(

Pγ · [p1 − up2]

Pγ · p2

)

→ Pγ · p2

Pγ · [p1 − up2] − iδ
− c.c.

• Since both, the on-shell and the rapidity constraints are polynomial in momenta,
multiploop methods are applicable without any modification.
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Method: rapidity master integrals

• IBP and recurrence relations express any relevant integral (out of 106 that are
needed) through few master integrals:
◦ 5 V-V master integrals,
◦ 5 R-V master integrals,
◦ 21 R-R master integrals.

• The process is characterized by a topology, not the particle content; as a
consequence master integrals are the same for γ∗, W, Z, H etc. production;

• V-V and R-V master integrals are known two-loop or one-loop integrals “multiplied”
by phase-space factors.

• R-R master integrals were unknown and hard to evaluate by a brute force
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Method: differential equations

• Two kinematic variables: m2
γ∗ , u ∼ exp(2Y ). Form diff. eqs. (Kotikov, Gehrmann,

Remiddi) for the “cut-integrals”

∂

∂m2
γ∗

=

• Apply IBP reduction to the r.h.s

∂

∂m2
γ∗

= A1 +A2 +. . .

• Solve differential equations order by order in ε;

• Boundary conditions can obtained from simple kinematic limits;

• Hierarchical solution: simpler master integrals are non-homogeneous terms in
differential equations for more complicated master integrals;
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Results: E866

• Measures rapidity distribution of the µ pairs in pp and pd collisions at√
s ≈ 40 GeV (fixed target)

• Sensitive to sea anti-quark distributions in the proton

dσ

dY
∼ e2

uu(x1)ū(x2) + e2
dd(x1)d̄(x2) + (x1 ↔ x2),

• ū and d̄ are not well-known for x ∼ 1; E866 is sufficiently sensitive to study this
issue.

• The NLO corrections are ∼ 40% in the central Y region, the scale dependence is
∼ 20%.

• What about the NNLO corrections?
◦ Do they stabilize the theory prediction and by how much?
◦ Do they improve or make worse the quality of the theory/data comparison?
◦ Is it justified to use constant K-factor for all rapidities?
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E866: DY rapidity distribution

• Substantial improvement in scale stability;

• NNLO distribution sharper in central rapidity regions (smaller factorization scales
are appropriate);

• Too many anitquarks in the proton.
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E866: DY rapidity distribution

• dσLO × K fails.

• dσNLO × K is accurate to 1 − 3%.
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E866: Alekhin PDFs

• Alekhin fits to DIS; DY rapidity distribution is the prediction.

• PDF uncertainties are large.
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Z at the Tevatron

• Unnaturally small scale dependence at LO (c.f. large shift from LO to NLO).

• The width of the NNLO band is 1%.

• Both Alekhin and MRST are consistent with the data (given the error bars).
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Z at the LHC

• Notice remarkable scale stability at NNLO (the width of the NNLO band is 0.2%.

• No uncertainty from perturbative QCD is left.
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Z at the LHC

• A more detailed investigation of the scale variation.
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W
± at the LHC

• Very good stability; no QCD uncertainty.

• Different distribution shapes for W±.

• W± charge asymmetry is very stable agains higher order QCD effects and PDF
uncertainties.
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PDF uncertainties and the LHC

• Let us treat different PDFs (MRST, CTEQ, Alekhin) as different models; can we
distinquish between them at the LHC given projected error bars?

• No, if the NLO QCD theory is used; the scale uncertainty is too large.
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PDF uncertainties and the LHC

• With the NNLO QCD theory, the scale dependence is gone;

• This makes the PDF uncertainty the largest theory uncertainty.
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Features of the result

• Huge (∼ 90%) cancellation of qq̄ and qg at NNLO; the gg becomes relevant.

• Large cancellation between “hard” and “soft” (universal) parts of the result;
“soft” contributions do not dominate.

• No difference between slow and fast PDFs evolution; N3LO evolution kernels for
DGLAP [Moch, Vermasseren, Vogt ] do not have a large impact on the prediction.

• Small corrections at the LHC is the result of the cancellation of PDFs changes and
the NNLO coefficient fucntion; both are relevant.

• The major theory uncertainty is due to PDFs.

• Numerical program VRAP http://www.slac.stanford.edu/lance/Vrap

Electroweak bosons rapidity distributions at hadron colliders – p.21/22



Conclusions

• New method for NNLO calculations (real radiation) in QCD; applicable to many
phenomenologicaly relevant applications;

• Rapidity distributions for γ∗, W, Z:
first NNLO calculation of any distribution in QCD for collider physics.

• E866 data/theory: too many antiquarks in the proton at moderate x in existing
PDFs; the d̄/ū ratio at x ≥ 0.2 is not correctly described; requires PDF re-fitting.

• QCD predictions for Z, W are possible with sub-percent precision; major
uncertainty from PDFs;

• For the 1% precision, other effects like EW corrections have to be incorporated.

• Z and W production should become “standard candels” for the LHC and the
Tevatron partonic luminosity monitoring.

PS. Fully differential calculations for W, Z production may be getting within reach. See
my talk on the Higgs production.
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